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Abstract

Confining electrons to fewer than three spatial dimensions increases the relative strength of poten-

tial to kinetic energy, which can generate a wide variety of novel emergent quantum phenomena.

I will discuss three experiments probing the unique physics of coupled 1D-2D and 0D-2D sys-

tems. First, we studied Coulomb drag between a 1D conductor and a 2D conductor: an individual

single-walled carbon nanotube and monolayer graphene, separated by a few-atom-thick hexago-

nal boron nitride layer. We found novel temperature- and carrier density-dependent drag behavior

arising from the mixed-dimensional nature of the system, including possible hydrodynamic flow of

graphene electrons generated by current in the nanotube. Separately, we measured thermal trans-

port in carbon nanotubes using 2D graphene sections as heaters and thermometers via Johnson

noise measurements. We demonstrated the high sensitivity of our thermometry technique and ob-

served signatures of unusual energy transport due to collective 1D electronic motion combined with

long-range interactions. Finally, we studied electrical and thermoelectric transport through an etch-

defined graphene quantum dot in a strong magnetic field, where irregularity on the edge of a small

flake in the lowest Landau level is predicted to generate novel non-Fermi liquid behavior. We found

significant deviations of the thermoelectric response from the predictions of the Mott formula at

high magnetic fields, and electrical conductance and thermopower resonances that suggest an inter-

play of quantumHall physics, Coulomb interaction, quantum confinement and disorder at a range

of temperatures.
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More is different.

Philip W. Anderson

1
Introduction

The fundamental appeal of studying condensed-matter physics for many scientists (certainly for me)

comes from the fact that when you consider large numbers of particles together, new emergent be-

havior arises that can be quite different from what could be predicted based on their single-particle

motion. The “mesoscopic” realm, spanning length scales of hundreds of microns to a few nanome-

ters1, and low-dimensional systems in particular, host a menagerie of interesting quantum phases.

“Zero-dimensional” (0D) quantum dots can behave as “artificial atoms” despite their much larger

1



size, and can demonstrate more exotic physics when coupled to larger systems2,3. Different veloci-

ties for collective excitations of spin and charge have been observed in effectively one-dimensional

(1D) carbon nanotubes, a hallmark of Luttinger liquid physics4. In the two-dimensional (2D)

realm, electrons in graphene can sometimes behave like a viscous fluid5. Even before atomically-

thin materials, experimenters looked to two-dimensional electron gases (2DEGs) to study phe-

nomena like the quantumHall effect6. Why do all of these novel quantum behaviors arise in low-

dimensional systems? As electrons become increasingly confined, their kinetic energy becomes less

important than their potential energy (i.e. their interactions), so interaction effects are enhanced5.

Since graphene was first isolated in 20047, it and other atomically-thin van der Waals materi-

als have opened up a brand new test bed for mesoscopic physic experiments. This is in part due to

the unique properties of graphene as a Dirac semimetal, which will be discussed in more detail in

Section 1.1; as an atomically-thin material, it is particularly easy to tune the carrier density with elec-

trostatic gating, and unlike most conventional 2DEGs, the carrier type can be switched between

electrons and holes. Many more van der Waals materials with various electronic properties (insula-

tors, semiconductors, antiferromagnets, ferroelectrics, and more) have since been discovered, and

they can be stacked together due to their interlayer electrostatic interaction. In particular, the ad-

vent of encapsulation of graphene with insulating hexagonal boron nitride (hBN)8 and the ability

to make electrical contacts only to the edge of a fully-encapsulated sample9 ushered in a new era of

high-quality transport measurements on graphene heterostructures. More recently, the demonstra-

tion of superconductivity10 and other strongly-correlated phases in magic-angle twisted multi-layer

graphene has generated an explosion of effort to probe the new phenomena that the additional

“twist” degree of freedom provides.

Various low-dimensional materials have been demonstrated as promising platforms for meso-

scopic physics experiments, so why study mixed-dimensional systems? In general, the experiments

I will describe were not conceived with the explicit intention of studying what happens when elec-

2



trons that are confined to a different number of dimensions interact. The aim of the first project,

which measured Coulomb drag between a carbon nanotube and graphene, was to study graphene

hydrodynamics, which had at that point been theoretically predicted11,12,13 but not experimentally

observed.

1.1 Introduction to graphene and carbon nanotubes

Many of the unique electronic properties of monolayer graphene and carbon nanotubes can be

derived from their crystal structures with relatively simple assumptions (such as nearest-neighbor

hopping in the tight-binding model). Since these concepts have been known for decades and have

been explained in many excellent references (I particularly recommend Refs. 14, 15, 16, 17), I will

only discuss key elements of the physics of graphene and carbon nanotubes in this section.

1.1.1 Structure and properties of graphene

Graphene is a single-atom-thick crystal of carbon atoms, arranged in a honeycomb lattice as shown

in Figure 1.1(a). This can be described as a hexagonal Bravais lattice with a two-atom basis, with

the two atoms typically labeled A and B. The primitive cell is a parallelogram with side length a =

√
3aC−C = 2.46 Å, where aC−C = 1.46 Å is the carbon-carbon bond length, and the lattice vectors

are

a⃗1 =
(√

3a
2

,
a
2

)
, a⃗2 =

(√
3a
2

,−a
2

)
. (1.1)

The corresponding reciprocal lattice is also hexagonal (Fig. 1.1(b)), rotated 90◦ relative to the

real-space lattice and with reciprocal lattice vectors

b⃗1 =
(

2π√
3a

,
2π
a

)
, b⃗2 =

(
2π√
3a

,−2π
a

)
. (1.2)
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Figure 1.1: (a) Graphene honeycomb lattice. The primitive vectors a⃗1 and a⃗2 are indicated in purple, the primitive
unit cell is the equilateral parallelogram (dashed purple lines) with a basis of two atoms labeled A and B. The carbon‐
carbon bond length aC−C is also shown. (b) Reciprocal lattice of graphene. The first Brillouin zone is the shaded center
hexagon. Reciprocal lattice vectors are b⃗1 and b⃗2, and high‐symmetry points Γ, K and K’ are also labeled. (c) Linear en‐
ergy dispersion of graphene at the K point. Adapted from Ref. 15.

The most important points in the first Brillouin zone, due to their high symmetry, are the Γ point

in the center and the K and K’ points at the vertices of the hexagon. Since the two basis atoms of

the graphene lattice are both carbon atoms, the K and K’ points are identical in most respects, but

they have opposite values of pseudospin. Graphene pseudospin is not related to the actual spin of

the electrons; rather it describes the extra degree of freedom that describes the orbital wavefunctions

sitting on either the A or B sublattices. As shown below, the two-component vector that quantifies

the weight of the wavefunction on each sublattice can be treated similarly in many ways as a spin-

1/2 degree of freedom, and is often described with a “pseudospinor” analogous to the spinor that

describes the spin degree of freedom.

The band structure of graphene can be calculated using the tight-binding formalism, starting

from a wavefunction comprising a weighted sum of the Bloch wavefunctions for the A and B sub-

lattices:

|Ψk⃗⟩ =
∑
R⃗

ei⃗k·R⃗(σA|R⃗,A⟩+ σB|R⃗,B⟩), (1.3)
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where R⃗ describes the location of a particular primitive unit cell in the crystal, σA(B)|R⃗,A(B)⟩ is the

wavefunction for an electron to be on the A(B) site in the primitive unit cell located at R⃗, and σA(B)

are the corresponding weights. Using this wavefunction to solve the Schródinger equation, we find

the dispersion relation

E(⃗k)± = ±γ

√
1+ 4 cos

√
3a
2

kx cos
a
2
ky + 4 cos2

a
2
ky. (1.4)

Here γ = 3.7 eV refers to the nearest-neighbor hopping energy between adjacent carbon atoms and

the two solutions (±) correspond to the conduction and valence bands, respectively.

If we shift our perspective to one of the K or K’ points (redefining k⃗ → K⃗ − k⃗, for instance), the

dispersion relation becomes

E(⃗k)± = ±ℏvF |⃗k|, (1.5)

where ℏ is the reduced Planck’s constant and the Fermi velocity vF is given by (1/ℏ)(∂E/∂k) at

the Fermi energy EF, and is approximately 106 m/s. Thus, near the K and K’ points, the dispersion

forms the famous “Dirac cone” shown in Figure 1.1(c), and the K and K’ points where the two

cones of the conduction and valence bands touch (which occurs at the Fermi energy) called Dirac

points. Due to the resemblance between this relation and the Dirac equation describing the motion

of massless relativistic particles, the electrons in graphene are often described as “Dirac fermions,”

moving at 1/300 the speed of light! This is also the charge neutrality point of the graphene, since if

EF increases, the conduction band begins to fill with electrons, and if EF decreases, there are instead

”holes” in the valence band. The pseudospin is parallel to the momentum in the conduction band

and antiparallel in the valence band, analogous to the correlation of momentum and real spin in

the Dirac equation. At finite temperature, when EF is at or near zero, there will be coexisting pop-

ulations of thermally-excited electrons and holes. This “Dirac fluid” is a quantum-critical hydrody-
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namic liquid18,19,20—an unusual phase that develops near the boundary between two stable phases,

in this case between electron and hole Fermi liquids, and more of its properties will be discussed as

they become relevant in later sections.

The existence of the Dirac fluid and the effectively massless nature of the charge carriers in graphene

are only two of its many fascinating properties. Another that is relevant to the physics that will be

discussed in the rest of this chapter is the suppression of backscattering. The Fermi surface is gen-

erally confined to either the six K and K’ points (in the case of intrinsic or undoped graphene) or to

six small circles around each Dirac point (for lightly-doped graphene). Backscattering an electron,

taking it frommomentum k⃗ to−k⃗, means that in momentum space it will move to the opposite side

of the first Brillouin zone. We note that the high-symmetry point opposite a K point is a K’ point,

with an opposite pseudospin, corresponding to the electronic wavefunction being localized on the

opposite sublattice. Since pseudospin is a conserved quantity near the Dirac points, this is forbid-

den, so backscattering is strongly suppressed21,22,23. This improves the carrier mobility in graphene,

with important implications for the behavior of carbon nanotubes as well.

1.1.2 Structure and properties of carbon nanotubes

Although it is not how they are formed in synthesis, many properties of carbon nanotubes can be

understood by thinking of them as “rolled-up graphene.” The underlying lattice is the same as

that of graphene, but we nowmust consider exactly how this lattice is “rolled”—which atoms are

mapped onto each other—in order to form the nanotube. This is described by the chiral vector C⃗,

illustrated in Figure 1.2 and defined via the graphene primitive lattice vectors as

C⃗ = na⃗1 +ma⃗2 = (n,m), 0 ≤ m ≤ n. (1.6)
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Figure 1.2: Construction of a carbon nanotube from graphene lattice. Colors indicate wavefunction phase on the A
sublattice: 0 (red), 2π/3 (green), and 4π/3 (blue). (a) Rolling the graphene lattice such that the chiral vector C⃗ becomes
the tube circumference forms a metallic carbon nanotube with chiral indices (4,1). The lowest‐energy subband passes
through the Dirac point. (b) Performing this operation for the chiral vector C⃗ =(3,1) results in a phase mismatch, causing
the lowest‐energy subband not to intersect the Dirac point. Δk0⊥ is the wave vector describing the shift due to this
mismatch, measured from the K point. Adapted from Refs. 15, 17.

The resulting structure is referred to as an (n,m) carbon nanotube. From this, we can immediately

find the nanotube diameter

dt =
|C⃗|
π

=
a
√
n2 + nm+m2

π
. (1.7)

We can see from this that different chiral vectors can result in the same diameter, so measuring the

diameter (e.g. using atomic force microscopy) is not sufficient to determine the crystal structure. It

is also worth noting that since the chiral vector is a linear combination of primitive lattice vectors, it

cannot map an atom on the A sublattice to an atom on the B sublattice. This is disallowed by pseu-

dospin conservation; mapping an A atom to a B atom would only be permitted if the pseudospin

were the same.

To see the implications of the crystal structure for the electronic properties, it is helpful to move

to reciprocal space. “Rolling up” the graphene lattice imposes an additional periodic boundary con-

dition on the electronic wavefunctions17, so the crystal momentum in the circumferential direction,
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k⊥, is quantized according to

k⊥πdt = 2πl, (1.8)

where l is an integer. As a result, the first Brillouin zone consists of 1D line cuts of graphene’s hexag-

onal Brillouin zone, with the length and angle of these cuts determined by the chiral vector. Each

line cut contributes a 1D subband to the dispersion relation. If one of these line cuts passes through

a Dirac point, the lowest-energy subband will have a linear dispersion (essentially a 1D version of

the graphene dispersion) and the nanotube is metallic; if no cuts intersect with the Dirac point, the

nanotube is semiconducting because all the subbands have energy gaps.

The conditions to form a metallic or semiconducting nanotube can also be seen from the graphene

lattice. There are three possible values for the phase of the wavefunction on the A sublattice: 0,

2π/3, and 4π/3 (colored red, green, and blue in Figure 1.2). When the graphene lattice is rolled into

a cylinder, it can happen that a red atom is mapped to another red atom, in which case the wave-

functions at the K (and K’) points are automatically solutions to the Schödinger equation on the

cylinder. Therefore, one of the line cuts must intersect with the K (and K’) points, so the nanotube

is metallic. On the other hand, if a red atom is mapped to a green or blue atom, there is a phase mis-

match of 2π/3 that must be adjusted for the wavefunction to be single-valued. This happens by

using a wavefunction that some value Δk0⊥ away from the K point, which will have an envelope

eiΔk0⊥r⊥ . (We use the convention that wavevectors k⃗ are measured from the Γ point; Δk⃗⊥ = k⃗⊥ − K⃗

is measured from the K point.) For the right value of Δk0⊥, this generates a phase modulation along

the circumferential direction that compensates for the mismatch (i.e. Δk0⊥πd = −2π/3). These

nanotubes will have a lowest-energy subband that is away from the K and K’ points, so they are

semiconducting. Since each phase on the A sublattice occurs exactly 1/3 of the time, a synthesized

batch of nanotubes is generally 1/3 metallic and 2/3 semiconducting. These phase conditions can

be conveniently expressed in terms of the chiral indices: if (n − m) is an integer multiple of 3 or 0,
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the nanotube is metallic. In practice, we can identify metallic versus semiconducting nanotubes by

their transport properties or, more conveniently, by various optical spectroscopic methods24,25,26.

We used Rayleigh scattering spectroscopy to characterize the carbon nanotubes for the experiments

discussed in this thesis, which is discussed in more detail in Appendix C.

A final note on the electronic properties of carbon nanotubes: the suppression of backscatter-

ing in graphene due to pseudospin conservation can be even more important in carbon nanotubes.

For metallic nanotubes, the Fermi surface is reduced from a circle to two points at k and−k, since

the momentum is confined in one dimension, and backscattering is again forbidden27. As a re-

sult, metallic carbon nanotubes can have extremely long electron mean free paths, up to tens of

microns21,27. In semiconducting nanotubes, since the lowest-energy subband does not intersect any

K or K’ points, the angle between the initial and final momentum states (with respect to a K point)

will be less than π, so there will be more overlap of the pseudospinors and this scattering is much less

strongly suppressed. The potential for higher-quality transport is one factor that led us to focus on

using metallic carbon nanotubes for the devices used to study carbon nanotube-graphene Coulomb

drag.

Aside from the scientific results, the nanotube-graphene drag project led to significant techni-

cal developments, most notably the Rayleigh scattering spectroscopy, imaging and transfer stage

(Appendix C). With this unique tool, we could not only see individual suspended nanotubes in real

time, but characterize their crystal structure and transfer them to a target substrate with high spatial

precision. We took advantage of this unique capability to perform thermal transport measurements

on a carbon nanotube, using sections of graphene as a all-in-one electrical contacts, heaters, and

thermometers for either end of a short nanotube “bridge.”
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1.2 Electrical conductivity, thermal conductivity, and thermopower

The simplest way to characterize a material using transport experiments is to measure its resistance.

When the electronic transport is diffusive, we quantify resistances of materials by applying a current

through or voltage gradient across a material and measuring the resulting voltage or current. For-

mally, we write this as Ohm’s law, j⃗ = σE⃗ = −σ∇V, where j⃗ is the electrical current density, σ is

the electrical conductivity, and∇V is the voltage gradient, with corresponding electric field E⃗. In

the hydrodynamic regime discussed above, this simple relationship acquires a more complicated de-

pendence on the current density (for example, a highly-viscous fluid may be governed by the Stokes

equation28, η∇2⃗j = n2e2∇V, where η is the viscosity, n is the charge carrier density, and e is the

electron charge). However, Ohm’s law provides a good starting point for classifying the behavior of

many materials.

In a diffusive transport regime, electrons do not just carry charge; they also carry heat, and have a

tendency to flow along thermal gradients from hot regions to cold ones. In the same spirit as Ohm’s

law, we can semi-classically define a matrix L that relates electrical and heat currents j⃗ and j⃗q to volt-

age and temperature gradients∇V and∇T29,30:

 j⃗

j⃗q

 =

L11 L12

L21 L22


−∇V

−∇T

 . (1.9)

In the absence of a temperature gradient,∇T = 0, then j⃗ = −L11∇V = −σ∇V, so we recover

Ohm’s law and see that L11 = σ. If we do not allow electrical current to flow, j⃗ = 0, but allow (or

apply) a temperature gradient∇T ̸= 0, then∇V = −(L12/L11)∇T, which we use to define the

thermopower:

S = −∇V
∇T

. (1.10)
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Figure 1.3: (a) Schematic of thermal conductivity measurement: electrons or other excitations carry a heat current
Q from a hot thermal reservoir to a cold reservoir. (b) Thermopower measurement: a thermally‐induced voltage is
generated across a material subject to a temperature gradient.

This also gives us L12 = −Sσ. FromOnsager’s reciprocal relations31 (discussed in more depth in

Chapter 2), the off-diagonal coefficients of the matrix are related by L21 = −L12T, which means

L21 = SσT = Πσ, where Π is known as as the Peltier coefficient. Finally, L22 describes the propor-

tionality between electronic heat current and the temperature gradient, which means L22 must be

the electronic thermal conductivity κe. We can put this all together to write

 j⃗

j⃗q

 =

 σ −Sσ

Πσ κe

 .

−∇V

−∇T

 . (1.11)

For weakly-interacting electronic systems that are described by Fermi liquid theory, an intriguing

correlation between electronic and heat currents was empirically observed in 1853 byWiedemann

and Franz32 and later more rigorously formalized as the Wiedemann-Franz (WF) law using quan-

tum theory29:
κ
σ
=

π2

3

(
kB
e

)2
T = L0T, (1.12)
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where kB is the Boltzmann constant. This defines the Lorenz number L0 = π2
3

(
kB
e

)2
. TheWF law

may not hold in strongly-interacting systems, when the Fermi liquid quasiparticle picture cannot

accurately describe the electronic behavior. Significant examples of non-Fermi liquid physics leading

to a breakdown of the WF law include quasi-one-dimensional materials33, cuprate superconduc-

tors34, and the charge-neutral point of graphene18. For low-dimensional materials like graphene

and carbon nanotubes, electronic thermal transport measurements are an equally important coun-

terpart to charge transport measurements, as their ability to probe charge-neutral excitations can

reveal important details about the nature of their strongly-correlated states35,36.

Often, measuring electronic thermal transport is difficult because thermal conductivity is fre-

quently dominated by phonons37,38. Creative experimental approaches have thus been required,

such as measurements of the thermal Hall effect33, or measuring particular mesoscopic systems such

as single-electron transistors39 and quantumHall systems35 and exploiting known thermal prop-

erties of these systems for electronic thermometry. Later, we will discuss quantumHall thermome-

try, which can be used to determine the temperature gradients for thermopower measurements, as

described in Chapter 4. For low-dimensional systems, conventional techniques such as the incorpo-

ration of thermocouples into devices are unfeasible because the electronic contribution to thermal

transport cannot be isolated from its phononic counterpart using these methods37. Johnson noise

thermometry in a novel multiterminal geometry was developed to measure electronic thermal con-

ductivity in graphene and other low-dimensional materials37,40,41. For the experiments described in

Chapter 3, we applied this technique to carbon nanotubes.

Aside from thermal conductivity measurements, we can use slightly more conventional tech-

niques to study the interplay of electronic charge and energy transport via the thermopower S.

When thermopower is only generated by electronic diffusion due to a temperature gradient, we

can semiclassically derive a relationship between the electrical conductivity and the thermopower,
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known as the Mott formula29,42:

SMott = −π2

3e
k2BT

1
σ
dσ
dE

∣∣∣∣
EF
, (1.13)

where EF is the Fermi energy. We can immediately note several features of the thermopower: it is

predicted to be linearly proportional to temperature T if 1
σ

dσ
dEF is T-independent, and it depends

on the derivative of the electrical conductivity evaluated at the Fermi energy. This makes it a highly

sensitive probe of the electronic structure of a system. TheMott formula relies on several assump-

tions, most particularly the “relaxation time approximation,” which is that the form of the non-

equilibrium distribution function does not affect the distribution of electrons emerging from colli-

sions or their collision rate29,43. While this is generally true for elastic collisions (typical of electron-

impurity scattering), electron-electron or electron-phonon scattering can produce inelastic colli-

sions, which can cause violations of the Mott formula. Electron-electron scattering can be extremely

important in graphene, including for a special regime of electronic transport: hydrodynamics.

1.3 Graphene hydrodynamics

The framework of hydrodynamics provides a universal description of how an interacting system

comes to thermal equilibrium5, achieved by coarse-graining our viewpoint to sufficiently long

length and time scales. On the microscopic level, a body of water is made up of H2Omolecules in-

teracting with each other. Solving the Schödinger equation for all the the molecules in a tablespoon

of water (just under 1 mole—5 × 1023 molecules) is clearly intractable, yet we can understand the

dynamics of how that water will behave reasonably well. This is possible because our fluid dynamics

equations (and our typical experiences with water) only deal with water on length and time scales

much larger than those of their intermolecular interactions. As a result, we can develop an effective

theory that only needs to deal with relatively simple conserved quantities such as particle number
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Figure 1.4: Illustration of different electronic flow regimes. In conventional Ohmic metals (left), electrical current flows
due to electrons (blue balls) moving independently and occasionally scattering from impurities in the crystal (red and
white sites). In a normal fluid or an electronic system in the hydrodynamic regime (right), the constituent molecules or
electrons frequently collide with each other, equilibrating in a way described by the theory of fluid dynamics. Adapted
from Ref. 44.

and total energy and momentum.

The initial development of fluid dynamics was to describe classical fluids, but in general the as-

sumptions of statistical mechanics do not radically change for quantummicroscopic degrees of

freedom. Under the right conditions, we should also be able to describe electrons as behaving like

a hydrodynamic fluid (Figure 1.4). Like the case of water molecules, the hydrodynamic theory for

electrons will apply at length (l) and time (τ) scales larger than those for electron-electron scattering:

l > lee and τ > τee, where lee and τee are the electron-electron scattering length and electron-electron

scattering time, respectively*. In condensed-matter systems, we must also consider the role of elec-

trons scattering (and potentially relaxing their energy and momentum) from other sources: impuri-

ties (limp, τimp), phonons (leph, τeph), and the edges of the device (lW, τW). A hydrodynamic descrip-

tion truly applies when electron-electron scattering is the predominant source of momentum and

*lee and τee are linked via the relation lee = vFτee, so they may be discussed somewhat interchangeably.
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energy relaxation on the microscopic level: limp, leph, lW ≫ lee (and similarly for τee, τimp, τeph, τW).

Although the application of hydrodynamic theory to condensed-matter systems has been consid-

ered since the mid-20th century45, realization was limited by the difficulty of creating a sufficiently

clean and interacting system, and relatively few successful experiments46 were performed in subse-

quent decades.

Graphene turns out to be an ideal system for electron hydrodynamics in many ways, and ad-

vances in quality and fabrication techniques rejuvenated the field. Encapsulation in hBN8,9 can dra-

matically reduce scattering from charged impurities on the substrate47, so limp can be hundreds of

nanometers. The small Fermi surface of graphene is also helpful because it corresponds to a shorter

electron-electron scattering time5† and reduces Umklapp scattering (scattering into the next Bril-

louin zone, which is far away if the Fermi surface is small). As mentioned in Section1.1.1, direct

backscattering is also unfavorable due to pseudospin-momentum locking. These two factors ex-

tend the timescale for momentum relaxation. Electron-phonon scattering has been measured to be

small48, in contrast to semiconductor quantum wells. Different modes of electron scattering may

dominate the momentum relaxation and thermalization in certain regimes; electron-electron scat-

tering generally scales∝ T2 or T in the Fermi liquid and Dirac fluid regimes, respectively5, while

electron-phonon scattering scales∝ T4 or T depending on whether the temperature is below or

above the Bloch-Grüneisen temperature (below which the momenta of phonons is restricted)48,

and electron-impurity scattering is relatively constant with temperature5. These scalings show that

it is possible to open a hydrodynamic “window” in clean graphene at moderate temperatures49,

where electron-electron interactions will dominate the thermalization and the mesoscopic behavior

may resemble a viscous fluid.

We aimed to study graphene hydrodynamics by taking inspiration from a classic fluid dynamics

problem: Couette flow50. This describes the motion of a viscous fluid between parallel plates, one

†τee ∼ 1
α2

ℏEF
(kBT)2 or∼

1
α2

ℏ
kBT in the Fermi liquid and Dirac fluid regimes, respectively; α ∼ 1.
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Figure 1.5: (a) Schematic of Couette flow. (b) Illustration of formation of drag current whirlpools due to viscous flow
of electrons in graphene being stimulated by drag due to current in nanotube, with distance‐dependent Coulomb drag
measurement. Adapted in part from Ref. 14.

of which is stationary and the other of which moves at constant velocity, causing a velocity gradient

in the bulk of the fluid (Figure 1.5(a)). In our carbon nanotube-graphene drag device, which will

be discussed in Section 2.2, the charge carriers in the nanotube are analogous to the moving plate,

imparting momentum to the graphene electrons via Coulomb drag. We could then examine the

distance dependence of the drag resistance (Figure 1.5(b)) for signs of viscous electron flow. Before

further discussion of the theory of Coulomb drag, we should introduce the quantumHall effect.

This regime of 2D physics in graphene has been intensely studied using Coulomb drag51,52, and

quantumHall transport is also a key element of the experiments described in Chapter 4.

1.4 The quantumHall effect in graphene

Graphene in a perpendicular magnetic field has long be known to host interesting quantum phases,

primarily related to the quantumHall effect22,53,54,55. At the simplest (non-interacting) level, the

charge carriers in graphene or another 2DEG in the quantumHall regime are organized in Landau

levels (LLs), which are flat bands with energies16

En = sgn(n)ℏvF
√
2|n|eB/(ℏc), (1.14)
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Figure 1.6: Schematic of Landau level density of states (left) and corresponding quantized Hall conductance σxy (right) in
graphene, as a function of energy. LL index n is indicated next to each level. For the Fermi energy EF shown, the filling
factor ν = 2. Adapted from Ref. 22.

where vF ≈ 1 × 106 m/s is the Fermi velocity, n = 0,±1,±2... is the electron-like (n > 0) or hole-

like (n < 0) LL index, and B is the applied perpendicular magnetic field. Importantly, graphene

hosts a LL with n = 0 at zero energy (En=0 = 0). In the regime where the LL width broadening

is larger than the Zeeman spin splitting, the degeneracy of each LL is gs = 4, with a factor of two

each from spin and sublattice degeneracy. Figure 1.6 shows the density of states of the gs-fold de-

generate LL spectrum and corresponding quantized Hall conductance σxy, which plateaus when the

Fermi energy EF is tuned between LLs and changes by gse2/hwhen EF crosses a LL22. Graphene is a

special quantumHall system due to its robust n = 0 LL, which remains fixed at E0 = 0 for all mag-

netic fields if sublattice symmetry (also called chiral symmetry) is preserved23,56. Chiral symmetry

dictates that an eigenstate ψE of the (graphene) Hamiltonian, with energy E, has a “chiral partner”

ψ−E = ΓψE with energy E, where Γ is a chiral operator that flips the sign of the wavefunction for

one of the two sublattice components23. As such, states at zero energy have chiral partners at the

same energy, which creates topological protection for the n = 0 LL against broadening of the flat

bands that occurs due to disorder in real quantumHall systems. This property was described for
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more generic systems at zero energy in a perpendicular magnetic field by Aharonov and Casher57.

The quantization of σxy therefore follows22

σxy = ν
e2

h
, ν = gs(n+ 1/2), (1.15)

where we have defined the “filling factor” ν in accordance with convention for quantumHall sys-

tems. The typical sequence of σxy in graphene has ν = ±2, 6, 10..., though in high-quality samples

at higher B, spin and sublattice degeneracies start to lift and other integer and fractional ν can be ob-

served55. The quantized conductance can be understood by the flat band electron-like (n > 0) LLs

being forced to bend sharply upward at the edges of the sample due to the interface with vacuum

(Fig. 1.7(a)). Each occupied LL that crosses the Fermi level generates a conducting state at the edge,

contributing e2/h to the conductance. Since electrons in a band described by potentialU(y) (as a

function of position y) have velocities v ∝ dU(y)/dy, and the slope of the bending LL is positive on

one edge and negative on the opposite edge, the edge currents on opposite edges of the sample travel

in opposite directions and are said to be chiral (Fig. 1.7(b)). Since the bands in the bulk of the sam-

ple are completely occupied, and any available states (with opposite momentum) are on the opposite

side of sample, both small-angle and large-angle scattering are suppressed in quantumHall systems,

leading to zero longitudinal resistanceRxx in quantumHall plateaux of Hall resistanceRxy
58. This

edge state picture can become substantially more complicated, particularly in the fractional quan-

tumHall regime59,60 but still serves as a useful basis for understanding the behavior.

Thermopower in a quantumHall system is also different than the diffusive electron regime.

With an applied temperature gradient∇T across a sample, the Fermi distribution f(ε) of the charge

carriers traveling from the hotter side to the colder side will more thermally broadened compared

to that of the edge state moving from the colder side to the hotter side (Fig. 1.7). This means there

are more occupied states above the Fermi level, so the magnitude of the warmer edge state is larger
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Figure 1.7: (a) Schematic of the effect of a temperature gradient−∇T on a quantum Hall system (n ̸= 0). The energy
of a LL (green curve) is constant in the bulk and increases sharply at the edges of the sample, generating edge currents
when crossing the chemical potential μ (dashed line). If there is a temperature gradient∇T, the Fermi distribution f(ε)
of the charge carriers moving from the hotter side of the sample (red curve on left) will be thermally broadened com‐
pared to the edge state traveling from the colder side (blue curve on right). (b) Schematic of thermopower measurement
in the quantum Hall regime. Adapted from Ref. 61.

than that of the cooler edge state, generating a thermoelectric signal. This difference should give rise

to peaks in the longitudinal thermopower that are quantized according to Sxx = −ΔVx/∇T =

(kBe/h)ln(2)/ν62, which has been approximately observed in graphene outside of the n = 0

LL43,61.

There are many more possible avenues for discussion of thermopower in the quantumHall

regime in graphene, but we were primarily interested in using it as a probe of more unusual physics,

the Sachdev-Ye-Kitaev (SYK) model63,64. This model describes a highly-entangled many-body quan-

tum system in which all of the constituent excitations (which are either spinless fermions63 or Ma-

jorana fermions64) are at the same energy and have random, all-to-all interactions. It has been held

up as an example of possible correspondence between theories of condensed matter and quantum

gravity65, and also holds interest as a window into strange metals and quantum chaos66. In Chapter

4, we will explore the theoretical prediction that the SYKmodel can be realized in the n = 0 LL of

a random-edged graphene quantum dot, and our electrical and thermoelectric transport measure-

ments attempting to probe this regime.
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Coulomb interactions generate a plethora of novel emergent phenomena in condensed-matter

systems, particularly when electronic confinement to fewer than three spatial dimensions increases

the relative strength of potential to kinetic energy5. We will close this chapter by introducing Coulomb

drag, an important experimental tool for studying interaction-driven effects in low-dimensional sys-

tems.

1.5 Coulomb drag in graphene

When a current is driven in a conductor that is near but electrically isolated from another, Coulomb

interactions between the charge carriers in the two conductors generate a voltage drop in the “pas-

sive” conductor52,67,68,69. The drag resistance is thus a direct probe of interlayer charge carrier in-

teraction. Most of the past theoretical and experimental efforts have focused on drag between 2D

conductors, such as electrons confined in semiconductor heterointerfaces68,69 and graphene51,52,70,

revealing several new emergent phenomena including exciton condensation under strong magnetic

fields52. Drag experiments have also been performed between 1D conductors71,72,73, showing signa-

tures of Wigner crystal and Luttinger liquid behavior.

In a system of two conductors with independent electrical contacts, small interlayer separation

d and minimal charge transfer or tunneling between the two conductors, driving a current Idrive in

one layer can induce a voltageVdrag in the other layer as a result of Coulomb interactions between

the charge carriers in each layer67. The drag resistance is defined asRdrag = Vdrag/Idrive, and is zero

in the absence of interlayer interaction. The temperature, charge carrier density, and magnetic field

dependence ofRdrag can provide insight into the nature of the carriers, their interactions, and their

environment.

The simplest mechanism for Coulomb drag to arise in two Fermi liquid conductors at finite

temperature T is momentum transfer due to electron-electron scattering67, illustrated in Figure 1.8.
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Figure 1.8: Schematic of Coulomb drag in a 2D‐2D system. Charge carriers in drive layer transfer momentum, energy, or
both to charge carriers in the drag layer, causing a voltageVdrag to develop.

Moving electrons in the “drive layer” transfer some of their momentum to the electrons in the “drag

layer” via interlayer Coulomb scattering, so they start moving in the same direction. With open-

circuit conditions in the drag layer, an electric field builds up to counter this “frictional force,” and

the corresponding voltage is measured asVdrag. Using the Drude model, we can describe the drag

resistivity ρdrag caused by this force as
67

ρdrag =
mdrag

e2ndriveτD
, (1.16)

wheremdrag is the effective mass of the carriers in the drag layer, ndrive is the carrier density in the

drive layer,−e is the electron charge, and τD is the characteristic timescale for interlayer momentum

transfer. τD can be calculated using the linearized Boltzmann formalism67,74, leading to a more

detailed expression for the drag:

ρdrag =
ℏ
e2
π2ζ(3)
16

T2

EF1EF2
1

ℵ1ℵ2kF1kF2d4
, (1.17)

where ζ(3) ≈ 1.202, EF1(2) are the Fermi energies of the two layers, ℵ1(2) are the inverse Thomas-

Fermi screening length in each layer, and kF1(2) are the Fermi wavevectors. There are some limits to
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when this equation applies: we require small interlayer separation d compared to the mean free path

in both layers, relatively strong screening (typically expressed as ℵd ≫ 1), and low temperature

(T ≪ EF/(kFd)).

Looking at Equation 1.17, we can gain some intuitive understanding of how the drag resistance

will behave. First, ρdrag ∝ T2, which makes sense as the drag is proportional to the electron-electron

scattering rate and the phase space available for scattering increases with temperature29. The in-

verse dependence on EF, kF, and ℵ can be understood by thinking of importance of carrier density

fluctuations relative to the total carrier density. With increasing numbers of carriers in either layer,

intralayer screening will compete with the interlayer drag, so ρdrag is larger at lower carrier densities.

The dependence on the interlayer distance d is also notable; the two conductors should be very close

(as noted above) to observe an appreciable drag effect. Finally, the sign of ρdrag depends on the rela-

tionship between current and momentum. If current is carried by charge carriers with the same sign

(e.g. electrons) in both layers, the electric field needed to counteract the induced drag current will

be in the opposite direction, so the measured ρdrag will be negative. On the other hand, if electrons

in the drive layer are transferring momentum to holes in the drive layer, the drag current will flow in

the opposite direction and ρdrag will be positive.

The first Coulomb drag experiments in semiconductor quantum wells68,69 showed good agree-

ment with this interlayer momentum transfer picture, particularly the T2 dependence of the drag

resistance and an interwell-spacing dependence consistent with d−4 scaling. For double graphene

heterostructures, deviations from this theoretical model were noted51,70, including the carrier sign

dependence. In the next section, we discuss graphene-based drag experiments in more detail.

1.5.1 Previous experiments on Coulomb drag in graphene-based systems

Coulomb drag between two graphene layers was first experimentally studied in 201170, with the

graphene layers separated by a 7 nm-thick layer of Al2O3 and the carrier densities in the two layers
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a b c

Figure 1.9: (a) ρdrag as a function of nB and nT. Black lines are isolevels every 12Ω. (b) Line cuts of ρdrag at equal carrier
densities in both layers, nT = nB (black) and nT = −nB (red). Data are plotted versus top gate voltageVT; bottom
gate voltageVB was simultaneously varied to realize the stated density conditions. Dirac cone diagrams illustrate differ‐
ent doping regimes. (c) Evolution of ρdrag with applied perpendicular magnetic field. Adapted from Ref. 51.

tuned by a global bottom gate. This was soon followed by measurements of Coulomb drag between

two graphene flakes encapsulated by thicker flakes of hexagonal boron nitride (hBN) and separated

by a trilayer of hBN (1 nm thick), with separate gates to tune the carrier densities of each layer51. We

can immediately see from the device geometry why graphene-hBN heterostructures are an attrac-

tive system for Coulomb drag experiments. The possible interlayer separations are on the order of a

few nanometers, smaller than what can be achieved in semiconductor double quantum wells (typ-

ically tens or hundreds of nanometers)68,69, while still keeping the two graphene layers electrically

isolated, so the interlayer interactions can be much stronger. As mentioned above, the carriers can

be continuously tuned from electrons to holes through the charge neutrality point via electrostatic

gating, an impossibility in typical semiconductor heterostructures, allowing regimes of drag beyond

the Fermi liquid regime to be explored.

The early graphene-graphene drag experiments found drag behavior consistent with interlayer

momentum transfer when there was an appreciable carrier population in both layers (see Fig. 1.9(a)).
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Figure 1.10: Schematic of energy drag for two graphene layers at charge neutrality. Transfer of temperature gradients
between the drive layer (labeled 1) and drag layer (labeled 2) causes momentum transfer (green currents P1 and P2 in
each layer) and thus charge transport in the drag layer, enhanced by perpendicular magnetic field. Figure based on Refs.
75 and 76.

The expression for the drag resistivity in this regime can be written as70:

ρdrag = − h
e6
ζ(3)
32

(kBT)2

d4
ε2

n3/2B n3/2T

, (1.18)

where kB is the Boltzmann constant, ε is the dielectric constant of the insulating spacer layer, and

nB(T) is the carrier density in the bottom (top) graphene layer. However, this model fails to com-

pletely capture the experimental observations of drag near the charge neutrality point (CNP).

Given the n−3/2 dependence for each layer, one might expect the magnitude of the drag resistiv-

ity to peak very close to the CNP, and go to zero exactly at the CNP, as there is no net carrier pop-

ulation and thus should be no way to transfer net momentum between the layers. In fact, a posi-

tive drag response was observed at the double charge neutrality point51 (Fig. 1.9(b)), which has a

non-monotonic temperature dependence, and became negative and extremely large with the in-

troduction of a perpendicular magnetic field (Fig. 1.9(c)). Perhaps unsurprisingly, the Dirac fluid

completely breaks the picture of Coulomb drag built up in the Fermi liquid regime.

Explaining this unusual behavior requires a new addition to the theory for Coulomb drag in

graphene: energy drag76,77,78. The essential idea is that energy as well as momentum can be trans-
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ferred from the drive layer to the drag layer, and spatial inhomogeneity in the carrier density can

then cause charge and energy to redistribute in the drag layer. Strain and nearby charged impuri-

ties51 can create local fluctuations in the carrier density. These are particularly noticeable near zero

density, where they form “charge puddles” of electrons and holes. Although this inhomegeneity is

greatly mitigated by hBN encapsulation47, it remains a potentially significant factor for the physics

of real graphene devices. When the length scale of the charge puddles,D, is small compared to the

interlayer distance d, charge puddles form independently in each layer and energy drag is not sig-

nificant. However, if d ≪ D, the charge puddles in the two layers become spatially correlated (or

anti-correlated, depending or whether they are predominantly caused by strain or disorder77) due to

the interlayer Coulomb interaction. Driving a charge current in charge-neutral graphene can create

a temperature gradient due to electron-hole friction. In strongly coupled graphene layers, this tem-

perature gradient can be transferred from the drive layer to the drag layer much faster than the elec-

trons can dissipate energy to the lattice76. The carriers in the drag layer then tend to equilibrate the

thermal distribution, moving from hotter regions to colder ones regardless of carrier type. Since the

drag layer carriers were initially (anti-)correlated with the carriers in the drive layer, the drag signal

becomes positive (negative) even at the double CNP. In a magnetic field (Fig. 1.10), this tendency is

further enhanced by the Nernst effect, leading to longitudinal and Hall energy drag signals75,76.

Applying a perpendicular magnetic field also raises the more complicated question of Coulomb

drag in the quantumHall regime. One of the major motivations for Coulomb drag experiments

has been the prospect of realizing an exciton condensate67. Excitons are bound electron-hole pairs,

which typically recombine and annihilate if formed in a single conductor. However, if the electron

and hole are in different layers and thus unable to recombine, these bosonic quasiparticles are much

longer-lived. Like other bosons, they can form a condensate at low temperatures79. A condensate

of magneto-excitons has been studied using double-layer graphene heterostructures in the quantum

Hall regime52,79,80, using Coulomb drag and similar measurements to explore the exciton interac-
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tions. Evidence for exciton condensates has also been shown in heterostructures of van der Waals

semiconductors81; Coulomb drag measurements may be a useful probe of their properties as well.

Coulomb drag experiments between mixed-dimensional systems, e.g. 1D-2D conductors, have

also been conceived82,83 to investigate the effects of dimensionality on electron-electron interac-

tions. Such a system was recently probed experimentally84 using an InAs nanowire as 1D conductor

and graphene as 2D conducting layer. This recent 1D-2D drag experiment shows an anomalous

temperature and density dependent drag response that might be related to energy drag76,77,78 due to

the large mismatch in thermal conductivities between InAs and graphene. However, the breakdown

of layer (Onsager) reciprocity and subsequent thermopower measurements in these devices85 sug-

gest thermoelectric effects induced by local heating may also play a substantial role in the reported

drag results. We note that these thermoelectric phenomena are nonlinear in the drive current, un-

like energy drag, which is a linear effect. The role of these mechanisms in our carbon nanotube-

graphene Coulomb drag measurements will be discussed in the next chapter.
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Life need not be easy, provided only that it is not empty.

Lise Meitner

2
Carbon nanotube-graphene Coulomb drag

The concept of Coulomb drag can be intuitively grasped, and in the ideal case, measuring

the drag between two strongly-coupled conductors seems like it should be very similar to a conven-

tional electronic transport measurement (since scattering between charge carriers in the two layers

can be theoretically described very similarly to intralayer scattering, but with a different effective in-

teraction67). In reality, preventing spurious signals such as interlayer gating69 and accounting for
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contributions to the measured drag voltage in addition to typical Coulomb drag required careful

efforts. One of the largest challenges proved to be fabricating 1D-2D heterostructures with an indi-

vidual, metallic carbon nanotube, a thin hBN spacer layer, and encapsulated monolayer graphene.

In this chapter, we will further develop the theory for Coulomb drag between a single-walled car-

bon nanotube and graphene, discuss its application to the study of graphene hydrodynamics, and

present the results of our nanotube-graphene drag experiments.

2.1 Theory for nanotube-graphene Coulomb drag

We studied Coulomb drag in a new 1D-2D conducting system, a metallic single-walled carbon

nanotube and monolayer graphene separated by an atomically thin (2-4 nm) insulating barrier of

hBN. Since carbon nanotubes and graphene have similar linear dispersion relations with compara-

ble Fermi energies and work functions16,86, the interaction-driven momentum and energy transfer

between carriers in separate layers are enhanced, which should amplify the drag signal.

The few theoretical studies of Coulomb drag in 1D-2D systems82,83 have mostly focused on what

could be achieved in conventional semiconductor heterostructures. More recently, theoretical work

by Badalyan and Jauho87 extended this framework to drag between a single carbon nanotube and

graphene. They found that the mixed dimensionality of the system (in particular, the additional

confinement of the momentum in the carbon nanotube) led to distinctive temperature, carrier den-

sity, and inter-conductor spacing dependence compared to the double graphene heterostructures.

The degree of screening also plays a substantial role. Considering the general form

ρdrag ∝
Tα

nβ11Dn
β2
2D

, (2.1)

where n1D and n2D are the carrier densities of the nanotube and graphene, and the exponents β1 =

1, β2 = 0.5 to 1.5 depending on the degree of electrostatic screening, and α ∼ 3.7 at low tem-
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peratures, transitioning to 1 < α < 2 at higher temperatures (the exact temperature scale for this

transition depends on the doping level). For semiconducting nanotubes, the temperature depen-

dence is similar, although the exact exponent depends on the interlayer spacing. Interestingly, ρdrag

has a kink in its density dependence (for both n1D and n2D); this occurs because backscattering is

not suppressed in semiconducting nanotubes, and becomes particularly appreciable at lower n1D as

screening is reduced.

This model assumes that both conductors are in the degenerate limit (that is, EF ≫ kBT);

thus the applicability of this theory to our devices is somewhat limited. In reality, as the discus-

sion in the previous chapter illustrates, the Coulomb drag response in graphene-based systems is

often strongest at or near the charge neutrality point, where one or both conductors become non-

degenerate. In order to understand our experimental data, we also drew on theory for graphene-

graphene Coulomb drag88 in the Fermi liquid and Dirac fluid regimes, which will be discussed

further in Section 2.8 in the context of our results.

2.2 Coulomb drag as a potential probe of hydrodynamics in graphene

Beyond intrinsic interest in the 1D-2D drag system, why might we try to generate Coulomb drag

between a carbon nanotube and graphene? Due to the small (∼ 2 nm) diameter of a single-walled

carbon nanotube, driving current in the nanotube provides an extremely localized 1D drag source in

the graphene channel. The implications of this for the physics of Coulomb drag have been discussed

above, but it also creates a possible opportunity to use the carbon nanotube to probe a different

regime of physics in graphene: hydrodynamics. Broader context for why this unusual viscous flow of

electrons might be observed in graphene is discussed in Section 1.3.

As we were conducting our nanotube-graphene Coulomb drag studies, other experiments had

been recently performed that demonstrated highly viscous electronic behavior in the Fermi liquid
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regime of graphene89,90,91. One important signature of viscous hydrodynamics is the negative po-

tential that develops next to a contact where current is injected; the viscosity causes nearby electrons

to be “dragged” along with the injected current. In a confined geometry this can lead to the forma-

tion of whirlpools of viscous electron motion13,28,89. Measurements at the time relied on directly

injecting current into a contact and performing conventional electronic transport measurements

(for example, of a negative “vicinity resistance”). Ohmic, or more typical resistive behavior, will

compete with the pure hydrodynamic behavior, and stray Ohmic contributions from the injected

current may mask the negative vicinity resistance. Another complication is that negative vicinity

resistance can also be observed in the ballistic regime92,93 (when electrons scatter primarily from the

edges of the device, rather than with each other), and in general, it has been difficult to distinguish

ballistic and hydrodynamic measurements through transport measurements alone. (More recently,

scanning probe measurements20,94 have provided a more detailed look at the hydrodynamic motion

of graphene electrons, including in the Dirac fluid regime.)

Our Coulomb drag experiments aimed to study hydrodynamics in a cleaner way than the previ-

ous transport work. Due to the 1D confinement of the momentum of electrons in the nanotube,

driving a current in the nanotube should be equivalent to injecting a straight line of current into the

graphene, without any parasitic stray currents that appear in conventional transport measurements.

Measuring the dependence of the drag resistance on distance from the nanotube would ideally en-

able us to detect a negative vicinity resistance or other signs of unusual conduction as signatures

of hydrodynamic behavior. Our results ultimately revealed that Coulomb drag between carbon

nanotubes and graphene is a complex phenomenon in its own right. While hydrodynamics may

still play a role in our devices, the interplay of electronic and thermoelectric effects and significant

contributions from disorder meant that our primary efforts were directed at understanding how

Coulomb drag evolves in this mixed-dimensional system.

30



2.3 Drag device fabrication

To briefly describe the device geometry, monolayer graphene is encapsulated in hBN and then trans-

ferred on top of a metallic single-walled carbon nanotube (SWNT). The hBN flake separating the

SWNT and graphene is 2-4 nm thick, so that the two conductors are sufficiently close together for

interlayer Coulomb interactions, but they remain electrically isolated, without a significant tun-

neling current. The graphene and SWNT have individual electrical contacts, allowing them to be

characterized separately. Many aspects of the device fabrication process are described elsewhere,

particularly in Refs. 14, 95.

2.3.1 SWNT synthesis, characterization, and transfer

Carbon nanotubes are grown in a chemical vapor deposition (CVD) furnace using the method

described in96. The growth substrate is a 5 mm× 5 mm silicon chip with a slit in the center (Fig.

2.2(a)), oriented perpendicular to the gas flow direction. A cobalt-molybdenum-based catalyst is

applied to the chip on the side of the slit nearer to the gas inlet, so that nanotubes grow suspended

across the slit thanks to buoyant forces caused by the combination of a parabolic gas flow profile in

the tube furnace and heating of the growth chip97. Suspended nanotubes were located and char-

acterized using Rayleigh scattering spectroscopy96 and imaging (Fig. 2.2(d)). By matching peaks in

Rayleigh scattering intensity with nanotube optical transition energies, the chiral indices (and thus

diameter and metallic/semiconducting nature) of the nanotube can be determined (Fig. 2.2(c)).

The scattered light is also routed to a camera, providing an image of the nanotube spanning the slit

(Fig. 2.2(b)). All the SWNTs used in devices described in this paper were metallic. The Rayleigh

scattering spectroscopy, imaging and transfer stage is described in more detail in Appendix C.

Electron beam (e-beam) lithography was used to define a∼ 50 × 50 μm resist-free window on

a SiO2/p-doped Si chip coated with∼ 100 nm of 495 K Polymethyl methacrylate (PMMA) A4 re-
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Figure 2.1: Picture of CVD furnace for nanotube growth and schematic of suspended nanotube growth mechanism
(adapted from Ref. 97).
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Figure 2.2: Nanotube suspended growth, imaging and characterization. (a) Schematic of nanotube growth chip with
catalyst and central slit. (b) Infrared image of suspended SWNT. (c) Optical excitation spectrum of an example metallic
SWNT. (d) Schematic of Rayleigh spectroscopy, imaging and transfer stage setup.
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sist. The resist layer helps the SWNTs transfer to the chip98. When a single SWNTwith the desired

characteristics has been located, it is aligned with the heterostructure so that it crosses the center

of the PMMAwindow (Fig. 2.3(a-b)). The growth chip and PMMA-coated sample are pressed

together until mechanical contact is evident (Fig. 2.3(c)]), then heated to 180 ◦C for 5 minutes to

soften the resist. The chips are then cooled to 90 ◦C and slowly separated (Fig. 2.3(d)). Successful

SWNT transfer is confirmed by scanning electron microscope (SEM) or atomic force microscope

(AFM) imaging. The same PMMAwindow can be reused several times in the event of unsuccess-

ful transfer, or to transfer multiple SWNTs for parallel device fabrication. Finally, the PMMA is

removed by high-temperature annealing in vacuum.

To anchor the SWNT to the substrate and confirm its suitability to be incorporated into a device,

electrical contacts were made to either end of a 30-50 μm section of the SWNT, inside the window

region (Fig. 2.3(e)). The mask for the contacts was defined by e-beam lithography, and metal was de-

posited by e-beam evaporation (10 nmCr/60 nmAu). Many other recipes for high-quality SWNT

contacts have been reported in literature, including some measurements with quantum-limited con-

tact resistance99,100,101,102. However, this recipe was found to remain the most reliable through the

additional fabrication steps.

2.3.2 Graphene-hBN heterostructure fabrication and transfer

Boron nitride-encapsulated graphene heterostructures were prepared using standard techniques8,9.

The top hBN flake (20-40 nm) is picked up with a polypropylene carbonate (PPC) film on a Poly-

dimethylsiloxane (PDMS) stamp, and then used to pick up graphene and bottom hBN (2-5 nm)

flakes. It was critical to ensure that the bottom hBN flake was both thin and large enough to com-

pletely cover the graphene (at least in the region intended to be near the SWNT), in order to allow

interaction between the graphene and SWNTwithout electrically shorting. Once assembled on a

stamp, the stack was transferred on top of a contacted SWNT (Fig. 2.3(f-g)). The PPC and stack
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Figure 2.3: Fabrication sequence for SWNT‐graphene devices. (a) PMMA window for SWNT transfer. (b) Alignment
of growth chip with CNTs to window. (c) Mechanical contact between growth chip and target chip. (d) Growth chip
removal; SWNTs are captured by PMMA. (e) PMMA removal and patterning/deposition of SWNT contacts. (f‐g) Trans‐
fer of hBN and graphene flakes to contacted SWNT. (h) Heterostructure shaped by etching, patterning/deposition of
graphene contacts. (i) Optical microscope image of a final device, with SWNT position indicated by red dashed line.
Gold electrode at bottom of image is one of the SWNT contacts. Scale bar is 2 μm.

were detached from the stamp by heating to 150 ◦C to melt the PPC, which was then removed by

high-temperature vacuum annealing.

2.3.3 Additional nanofabrication

Following stack transfer, the heterostructure was shaped into a bar (with additional extended re-

gions above the SWNT to avoid etching it) by reactive ion etching the heterostructure with CHF3

through a resist mask defined by e-beam lithography. A second lithography step defined the graphene

contact electrodes (Fig. 2.3(h)), which were made by reactive ion etching to expose a clean graphene
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edge, and then depositing a metallic trilayer (2 nmCr/8 nm Pd/50 nmAu) using thermal evapo-

ration (as described in Ref. 9). An optical micrograph of an example nanotube-graphene device is

shown in Fig. 2.3(i), and a scanning electron microscope image of the same device in Fig. 2.4(a).

We briefly note that it is possible to invert the order of the layers in the SWNT-graphene het-

erostructure, so that the hBN-encapsulated graphene is placed on the substrate first, and then a

CNT is transferred on top. This improves the quality of the graphene by enabling the use of a

thicker hBN layer between the graphene and the SiO2. However, the extremely low friction be-

tween SWNTs and clean hBN can result in the SWNT bending and shifting from the intended

transfer position, sometimes shorting to exposed parts of the graphene or breaking due to stress in

fabrication. In contrast, transferring the SWNT to SiO2 pins the SWNT to the rougher substrate,

and allows for screening out poorly-conducting SWNTs before transferring a stack. It was thus

found to be a more reliable fabrication method, although the yield of working devices after SWNT

transfer was still low due to poor electrical contact to the SWNT (or generally high SWNT resis-

tance), SWNTs breaking during stack transfer, and the thin, bottom hBN flake shifting or cracking

during stack transfer and allowing the graphene to short the SWNT.

2.4 Coulomb drag measurements

While we focus on one device in most of following discussion, numerous SWNT/graphene devices

were measured, and similar results were obtained. Additional data can be found in Appendix A.

Measurements of the drag resistance were performed by applying DC current Idrive through the

drive layer (SWNT or graphene) while the voltageVdrag was measured in the drag layer (graphene

or SWNT). Example data for both configurations are presented in Figure 2.4(b). When using the

SWNT as drive layer,Vdrag in graphene is typically measured with the voltage probes nearest the

SWNT, at a distance x = 800 nm away (closed circles). At temperature T = 300 K, there is a linear
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Figure 2.4: (a) False color scanning electron microscope image of a typical SWNT‐graphene drag device. Graphene
(green) is encapsulated in hBN (dark blue) and transferred on top of a metallic SWNT (dashed line in center of blue
charged region). Electrical contacts (gold) are made to the graphene and SWNT. Inset: cross‐section schematic of the
device. (b)Vdrag versus Idrive for reciprocal layer configurations: nanotube‐drive, graphene‐drag (orange, filled symbols)
and graphene‐drive, nanotube‐drag (blue, open symbols). Data were taken at T = 300 K andVg = 21 V, with
averaging gate voltage window ΔV = ±1 V to enhance the signal‐to‐noise ratio. Dashed curves are lines of best fit.
(c) SWNT conductance as a function of gate voltage. The dip is a local conductance minimum, not the charge neutrality
point. (d) Graphene resistance as a function of gate voltage. (e)Vdrag in graphene versus SWNT Idrive andVg. (f)Rdrag
versusVg. Dashed line marks zero drag signal.
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relationship between Idrive andVdrag, whether the SWNT or the graphene channel is the drive layer.

Using the graphene as the drive layer and measuringVdrag across the SWNT (open circles) results in

a noisier signal than the reciprocal drag scheme, due to the higher resistance of the SWNTs. Even so,

both biasing configurations yield the same current-voltage relationship. This Onsager reciprocity

when drive and drag layers are exchanged demonstrates that the system is in the linear response

regime,103,104 allowing the extraction of the drag resistance from the slope: Rdrag = ΔVdrag/ΔIdrive.

In our devices, the SWNTs are beneath the graphene (Fig. 2.4(a) inset), enabling the carrier den-

sities in both SWNT and graphene to be tuned by a voltageVg applied to the p-doped silicon back

gate across the 285 nm SiO2 dielectric layer. Figure 2.4(c) and (d) show the conductanceGNT of

SWNT and resistanceRGr of graphene, respectively, as a function ofVg measured at T = 300 K.

The gradual decrease ofGNT asVg increases indicates the SWNT is hole-doped, as discussed fur-

ther in the next section.. In the graphene,RGr exhibits a peak corresponding to the charge neutrality

point (CNP) around gate voltageV0 = 13 V. We also measure the drag response as a function

ofVg, as shown in Figure 2.4(e). We extractRdrag in the linear response regime in as a function of

Vg, as described above. ForVg < V0,Vdrag and Idrive have opposite sign, while forVg > V0,

they have the same sign. As shown in Figure 2.4(f),Rdrag thus changes sign atVg = V0 where the

dominant carrier type in graphene switches from electrons to holes. This behavior is qualitatively

similar to previous measurements of momentum-transfer Coulomb drag in double-layer graphene

systems,51,70 as discussed in Section 1.5.1. The higher magnitude of e-h compared to h-h drag can

be attributed to the higher density of holes in the SWNT at more negative gate voltages. Due to

heavy SWNT doping, the kF’s of the SWNT and graphene do not overlap within our experimental

gate window, preventing us from investigating the double neutrality point, where the chiral nature

of the 1D-2DDirac system can be explored105.
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Figure 2.5: (a) Conductance of the SWNT in device D1 at T = 200 K as a function of gate voltage. Arrows indicate
direction ofVg sweep; positive to negative (red) and negative to positive (blue). (b)Rdrag measured simultaneously with
the SWNT conductance in (a).

2.4.1 SWNT conductance

I will pause the discussion of results at this point to highlight a few technical points that are key to

understanding the results. First, a brief note on the transport behavior of the SWNTs in our devices.

As shown in Fig. 2.4(c), the conductance of the SWNT decreases with increasing gate voltageVg,

characteristic of a hole-doped nanotube. There is also a notable dip in the conductance around

Vg = 40 V. While at first this may appear to be the charge neutrality point of the metallic SWNT,

it was found to shift its position depending on the direction of the gate voltage sweep, as shown

in Fig. 2.5. However, the overall SWNT conductance away from the dip generally decreased with

increasingVg, regardless of the gate sweep direction. Furthermore, the drag resistance measured

during the same gate voltage sweeps does not change polarity when the SWNT conductance dip is

on the left side of the graphene CNP as opposed to on the right (Fig. 2.5(b)). We therefore conclude

that the SWNT appears to remain hole-doped at all accessibleVg values. The most likely origin

of this conductance dip shift is doping from charges on the substrate, which are reconfigured as

the silicon gate is kept at a particular voltage (as before the start of a gate sweep) and then swept.

Since the nanotube rests directly on the SiO2, it is more susceptible to this disordered electrostatic
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Figure 2.6: (a) SWNT conductance as a function of back gate voltage in a SWNT‐BLG device (axes flipped to align with
(b)). (b) Drag resistance as a function of back gate and top gate voltages.

environment than an encapsulated conductor, such as the graphene layer. The uncertainty in the

nanotube CNP position is incorporated into estimates of the SWNT Fermi energy plotted in Fig.

2.9(b) below. More details of the calculation are in Section 2.7.

Due to the high hole density in the SWNT, the Fermi wavevectors of the SWNT and graphene

are significantly mismatched when the drag signal is maximized near the graphene CNP (see Section

2.8 for further discussion of drag mechanisms). We could not independently tune the SWNT and

graphene carrier densities effectively due to the small breakdown voltage of the thin separating hBN

dielectric. Although the increased electron-electron scattering phase space when kGrF = kNT
F may

generically lead to an enhancementRdrag, we expect that the high kF where this would occur would

mean the Coulomb interaction is already quite suppressed, reducing the drag signal.

In some devices, we do observe a change in the polarity of the drag resistance on either side of

a dip in SWNT conductance. We provide an example in a double-gated SWNT-bilayer graphene
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(BLG) drag device, also used to estimate capacitance ratios in Section 2.7. Figure 2.6(a) shows the

SWNT conductance tuned by the back gate (the top gate has almost no effect on the SWNT, as

it is generally screened by the graphene) and (b) is a color plot of drag resistance as a function of

back gate and top gate voltages. There is a clear sign reversal with both the graphene CNP (tuned

by both top and back gates and thus diagonal on this plot) and SWNT conductance dip (tuned

only by the back gate). This allows us to say with some confidence that, in this device, the SWNT

conductance dip is in fact the CNP. Extensive measurements were performed in SWNT-BLG de-

vices (some results are presented in Ref. 14, 106), but the vast majority of data were dominated by

heating-induced nonlinear thermoelectric effects rather than Coulomb drag. There were signifi-

cant nonlinear effects in some of the SWNT-monolayer graphene drag devices as well, which will be

discussed in Section 2.5.

2.4.2 DC drag measurement technique

Low-frequency ACmeasurements are a standard technique for electrical transport experiments,

including many Coulomb drag and other double-layer measurements (e.g. Refs. 52, 107). However,

drag measurements are sensitive to parasitic effects that can obscure the behavior that truly arises

from interlayer charge carrier interactions.68,69 For example, when a bias is applied to the drive layer

to initiate current flow, the layer acquires a non-zero potential due to contact and layer resistances

of the drive layer, which may cause an asymmetric gating effect on the drag layer. This is particularly

problematic for ACmeasurements, since the alternating potential on the drive layer can capacitively

couple to the drag layer and generate an alternating current, which can cause a spurious alternating

voltage signal in the drag layer due to its contact and layer resistances.69

The interlayer potential can be manually adjusted to approximately zero using resistance bridges.68,69

However, as the gate voltage is changed during the measurement, the layer resistances change sub-

stantially, unbalancing the bridge circuit. Another problem in our system is the disparity in contact
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Figure 2.7: Circuit diagrams for DC measurement. (a) Schematic of symmetrically biased SWNT (drive layer) and voltage
measurement on graphene (drag layer). Additional ammeters on SWNT and graphene can measure the SWNT conduc‐
tance and SWNT‐graphene tunneling current, respectively. (b) Symmetrically biased graphene (drive layer) and voltage
measurement on graphene (to estimate graphene resistance) and SWNT (drag layer). In this case, large (∼ 10MΩ)
resistors are added after the voltage sources so that the graphene is being current biased.

resistances between the graphene and SWNT; while graphene contacts typically have resistances on

the order of 100 Ω, the lowest SWNT resistances we achieved in these devices were∼ 100 kΩ. This

renders the SWNT-graphene drag devices very susceptible to interlayer bias effects.

DCmeasurements avoid introducing spurious signals from capacitive coupling but are more

sensitive to noise and must be carefully monitored to ensure the signal in the drag layer is not sim-

ply originate from local heating-induced thermoelectric effects, as addressed in the following sec-

tion. To circumvent these issues, we performed our measurements by symmetrically DC biasing the
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drive layer, applying±Vdrive/2 to either side of the SWNT or to a pair of contacts in the graphene

(adding a pair of resistors in series to limit the current; the resistor values can be modified, or an ad-

ditional resistor inserted, to account for differences in contact resistance) and measuring the result-

ing Idrive. The circuits are shown in Figure 2.7. The value ofVdrive (and thus Idrive) is swept through

a range of values (typicallyVdrive = 0.3 V → −0.3 V on one contact, and−0.3 V → 0.3 V on

the other) multiple times, and the detectedVdrag values at each Idrive were averaged to reduce noise.

The error for each displayedVdrag data point is calculated using the standard error on the mean:

σx̄ = σ/
√
n, where x̄ represents the average of a population of measurements, σ is the standard

deviation, and n is the number of independent measurements.

2.5 Nonlinearity and breaking Onsager reciprocity

Since Coulomb drag is a linear process, it is important to check that the drag voltage we measure

is linear in the drive current. An equivalent test is to exchange whether the same drag resistance is

obtained when the drive and drag layers are exchanged (i.e. comparingRdrag for current driven in

the SWNT and voltage measured at a particular pair of voltage probes in the graphene withRdrag

for current driven between the same pair of probes in the graphene and voltage measured across the

SWNT).

The underlying idea of this test is Onsager’s principle of microscopic reversibility, also called

Onsager reciprocity,31,103,104 or layer reciprocity in the specific context of Coulomb drag.51,76,78 For

a system in local thermodynamic equilibrium that has some generalized forces∇f (in this case the

voltage) that are conjugate to currents J, we can write

Jα =
∑
β

Lαβ∇fβ, (2.2)

where L is a matrix of transport coefficients. An example that may be familiar is Fourier’s law for
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heat conduction, jq = −κ∇T (jq is the heat current density and κ is the thermal conductivity),29 or

Ohm’s law for electrical conduction, j = −σ∇V (j is the electrical current density and σ is the elec-

trical conductivity), as discussed in Chapter 1. Onsager’s reciprocal relations state that the matrix L

is symmetric when time-reversal symmetry holds (Lαβ = Lβα), which is true in the linear response

regime without an applied magnetic field (which breaks time reversal symmetry). In the case of a

Coulomb drag system, the conjugate force and current are∇Vdrag and Idrive and α, β represent the

two conductors. Although it is counterintuitive in a mixed-dimensional device, Onsager reciprocity

should still hold in the linear response regime.

While we observed a linear drag response at room temperature, the relationship between drive

current and drag voltage in our device becomes increasingly nonlinear as T decreases (Fig. 2.8(a)).

To quantitatively address this change, we fitVdrag with a 3rd-order polynomial in Idrive: Vdrag =

IdriveRdrag + γI2drive + ηI3drive, where γ and η are fitting coefficients. The nonlinear effect sensitively

varies withVg; Figure 2.8(b-c) shows theVg dependence of γ and η at several fixed temperatures. We

find that γ > 0 and η < 0 for all gate voltage ranges we probe, and both quantities have larger mag-

nitude nearer the CNP of graphene (Vg ≈ V0) and at lower temperatures. This increasingly non-

linear effect also breaks Onsager layer reciprocity at low temperatures. As shown in Figure 2.8(d)

and (e), the drag resistance from SWNT-drive and graphene-drive configurations show progressively

worse correspondence at lower temperatures, as the nonlinear part of the relation between Idrive and

Vdrag becomes appreciable.

Higher-order dependence ofVdrag on Idrive is best explained by development of a temperature

gradient in the SWNT due to the Peltier effect or Joule heating, which can be efficiently transferred

to the nearby graphene76,77,78. Such a temperature gradient in the graphene generates a thermoelec-

tric voltage and causes a temperature-dependent change inRdrag. Both can give rise to nonlinear

terms inVdrag.

To describe this relationship in more detail, we first note that driving current INT in the SWNT
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Figure 2.8: (a)Vdrag versus Idrive atVg = 22 V for varying temperatures. Dashed lines are 3rd‐order polynomial
fits. (b) 2nd‐order coefficient versusVg. (c) 3rd‐order coefficient versusVg. Regions of noisy data in (b) and (c) are
due to SWNT local conductance dip limiting Idrive. (d)Rdrag from linear fit versusVg (subtracting the graphene CNP
voltage) for reciprocal configurations at T = 180 K (same colors and symbols as Fig. 2.4(b)). (e) Same measurement at
T = 117 K.
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can produce a nonuniform temperature profile due to the thermoelectric Peltier effect (ΔTP ∝ INT)

and Joule heating (ΔTJ ∝ I2NT). As the graphene and SWNT are in close proximity, this temper-

ature profile can be transferred from the SWNT to the graphene above, particularly when the gate

voltage is tuned near the graphene CNP76,77,78. This energy transfer gives rise to a temperature gra-

dient across the voltage probes in the graphene layer, ΔT(x) = ΔTP(x) + ΔTJ(x), where x is the

distance from SWNT to the voltage probes (fixed for any given pair of probes, and thus omitted in

the following analysis).

There are two mechanisms by which ΔT can produce a nonlinear drag response: (i) generation

of a thermoelectric voltageVTE(ΔT) = −SΔT, where S is the Seebeck coefficient of graphene

and ΔT ∝ I2NT; and (ii) temperature dependent change in the drag resistanceRdrag producing a

nonlinear drag voltage: VNL(ΔT) = 1
2
dRdrag
dT ΔTIdrive. The thermoelectric voltageVTE(ΔT) =

−SΔT is a well-known phenomenon in systems with a thermal gradient108. The second nonlinear

contribution to the drag voltage,VNL(ΔT) = 1
2
dRdrag
dT ΔTIdrive, merits further discussion.

This expression can be obtained by assuming a small temperature gradient between two voltage

probes separated by a distance L. The local drag resistivity ρdrag relates the drag layer local electric

field ε and drive current density jdrive by ε = ρdragjdrive. Now we consider a small, constant tem-

perature gradient dT/dx between the voltage probes where x = 0,L correspond to the respective

electrode positions. The temperature difference between the electrodes is then ΔT = LdT/dx. The

drag voltage between them can then be obtained (with T0 the temperature of the thermal bath):

Vdrag =

∫ L

0
jdriveρdrag(T(x))dx = jdrive

∫ L

0
ρdrag(T(x))dx (2.3)

= jdriveLρdrag(T0) +
1
2
jdrive

dρdrag
dT

dT
dx

L2 (2.4)

= RdragIdrive +
1
2
dRdrag

dT
ΔTIdrive (2.5)
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The first term is the typical drag resistanceRdrag between the voltage probes at x = 0 and x = L,

and the second term is the nonlinear contribution (since ΔT ∝ Idrive or I2drive, as discussed above)

due to the temperature dependence ofRdrag.

Allowing heating by both effects mentioned above, we identify terms contributing toVdrag

that are proportional to INT (Rdrag andVTE(ΔTP)), I2NT (VTE(ΔTJ) andVNL(ΔTP)), and I3NT

(VNL(ΔTJ)). The INT-linear thermoelectric response is energy drag, which is observed to be large

in graphene systems when both layers are tuned very near the CNP51,77,78,76, but is otherwise negli-

gible. The presence of both quadratic and cubic nonlinearity in our experimental data, with peaks

developed in both |γ| and |η| at the graphene CNP (see Fig. 2.8(b) and (c)), suggests that, at min-

imum, the temperature dependence ofRdrag (i.e. (ii) above) must play a significant role. These

effects are significant near the CNP, where |dRdrag
dT | exhibits large fluctuations at low temperatures

due to disorder (see Fig. 2.8(e)). The nonlinear contribution becomes more appreciable as the linear

drag signal diminishes at lower temperature, and in SWNT devices with larger resistance (including

contact resistance; see following section for additional data), which also supports the local heating-

induced energy transfer picture.

2.6 Carrier density and temperature-dependent drag

To avoid the nonlinear drag phenomena discussed above, we focus on linear drag resistance mea-

sured at small drive current at relatively high temperature (T > 100 K). Figure 2.9(a) showsRdrag as

a function of gate voltageVg, referenced to the CNP of grapheneV0, at different fixed temperatures

in this regime. In general,Rdrag changes sign at the graphene CNP, and that |Rdrag| grows linearly,

peaks, then rapidly decreases as the graphene carrier density, nGr ∝ Vg − V0, increases. Fig. 2.9(b)

shows thatRdrag ∼ (Vg − V0)
−β, where 1 < β < 2 at different temperatures. This behavior

resembles 2D-2D graphene drag, where 1 < β < 2 has also been observed70,51.
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Near the CNP of the graphene channel, disorder becomes more relevant, creating charge pud-

dles109. The nGr-dependent conductance of the graphene channel is accordingly expected to sat-

urate at low temperatures for |nGr| < δn, where δn is the residual density due to charge puddles,

which can be estimated from the temperature-dependent conductanceG of the graphene110. Fig-

ure 2.9(d) showsG(nGr)measured in the graphene channel of our device for T ≲ 150 K. From

the saturation ofG(nGr) near the CNP, we estimate δn ≈ 1.1 × 1010 cm−2. For |nGr| < δn, the

electron and hole contributions of Coulomb drag cancel, resulting in linearly vanishingRdrag with

nGr as observed in the experiment (shaded region in Fig. 2.9(a)). We also estimate the puddle energy

scale kBTd = ℏvF
√
πδnwhere vF = 106 m/s is the Fermi velocity of graphene. From δn experimen-

tally obtained above, we find the disorder temperature scale Td ≈ 140 K, which separates the low

temperature regime where disorder effects are dominant and the high temperature regime where

thermal broadening is appreciable.

We find the drag near the graphene CNP depends sensitively on temperature. Figure 2.10(a)

shows T-dependentRdrag at fixed density (reported as nbulkGr , the upper bound of the estimated

graphene carrier density). For nbulkGr = ±1.3 × 1010 cm−2, close to the peak value of |Rdrag(nbulkGr )|,

Rdrag increases linearly in T − Td in the high temperature regime (T > Td). In the low tem-

perature regime (T < Td), however, the linear responseRdrag is difficult to determine, due to

the nonlinear drag effects and broken Onsager reciprocity discussed above. At larger density (e.g.

nbulkGr = ±8.4 × 1010 cm−2, far from the CNP), we observe a similar trend, although |Rdrag| is

reduced. A broader range of the density and temperature dependentRdrag(nbulkGr ,T) is shown in Fig-

ure 2.10(b), where the magnitude of the drag resistance appears to increase approximately linearly

at all densities. For T > Td, the density dependence of
dRdrag
dT behaves similarly toRdrag(nbulkGr ) (Fig.

2.10(c)).

The temperature dependent drag behavior discussed above is distinctly different from 2D-2D

drag in graphene, where a crossover betweenRdrag(T) ∼ constant andRdrag(T) ∼ T−2 is ex-
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Figure 2.9: (a) Drag resistance as a function ofVg at various temperatures: 265 K (top), 235 K, 200 K, 160 K, 130
K (bottom). Disorder‐dominated range is indicated by gray shading. b) Estimated range of Fermi energies for SWNT
(purple) and graphene (blue) in a range ofVg near the graphene CNP. Dot‐dashed line is approximate center of SWNT
EF range. (c) Log‐log plot ofRdrag versusVg − V0 at selected temperatures, withRdrag ∝ (Vg − V0)

−1 (dot‐dashed)
andRdrag ∝ (Vg − V0)

−1.5 (dotted) for comparison. (d) Graphene conductance versus charge carrier density for
temperatures in (a). The residual carrier density δn is estimated by the intersection of the line at minimum conductivity
(black) and a linear fit to log(G) away from charge neutrality (dark red dashed line shows example fit for T = 118 K).
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pected88 in the parameter range of our experimental regime, EGrF ≲ kBT ∼ ENT
F . As we will dis-

cuss further in Section 2.8, for 1D-2D drag between a metallic SWNT and graphene, Badalyan and

Jauho calculated the Coulomb drag effect in the Fermi liquid regime of both conductors (kBT ≪

ENT
F ,EGrF )87, predictingRdrag(T) ∼ Tα, where α ≈ 3.7 at low temperatures. A more general theory

of 1D-2D drag83 predicts a transition to 1 < α < 2 at higher temperatures (T > Td). While a

more extensive model extending to the nondegenerate Dirac fluid limit in the presence of disorder is

required for further quantitative comparison, our experiments show qualitatively similar behavior in

the high temperature limit.

2.7 Estimation of nanotube and graphene carrier densities

To determine the carrier densities (and thus Fermi energies) of each conductor as a function ofVg,

we employ a finite element analysis of the graphene channel and SWNT together with the hBN

separation layers and silicon back gate (the geometry shown in Fig. 2.4(a) inset). Since the SWNT

locally screens the graphene channel from the back gate, the local carrier density in graphene is re-

duced in the graphene channel directly above the SWNT and maximized away from the SWNT. To

estimate the carrier density (and thus chemical potential) of the SWNT, we also need to consider

device geometry and quantum capacitance.

Straightforward application of the analytical formulae for capacitance between parallel conduct-

ing planes (for graphene-back gate capacitance) or a wire and a ground plane (for SWNT-back gate

capacitance) would not adequately account for the electrostatic environment of either the SWNT

or graphene. As such, we used COMSOLMultiphysics to perform a finite-element analysis of the

gate, conductors, and dielectrics and computed the induced charge on the SWNT and graphene

due to an applied gate voltage. Material parameters such as the relative permittivity were found in

Refs. 8, 15, 111, 112, 113, 114, 115, 116, 117, 118. Figure 2.11 shows a color map of the electric
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Figure 2.11: COMSOL simulation of SWNT‐graphene device. Color map shows |E| with 1 V applied to back gate for a
device cross‐section. Overlay (black line) shows calculated graphene carrier density nGr as a function of distance x from
the SWNT.

field in this region due to an appliedVg = 1 V, along with the resulting charge carrier density in

the graphene. The simulation suggests that the local electric field (and thus the local carrier den-

sity) is reduced by a factor of∼ 30 in the graphene directly above the SWNT compared to the

value predicted from a parallel-plate capacitor model. Due to the local nature of the Coulomb in-

teraction (∝ r−3), we expect that this region of decreased carrier density is the part of the graphene

that most directly contributes to Coulomb drag. We use the capacitance of this screened region as

a lower bound in Fig. 2.9(b), while retaining the analytic “bulk” value as an upper bound (see Fig.

2.12 for equivalent capacitance circuits for both scenarios). Since the area of carrier depletion in

the graphene is extremely narrow (the width of this “screening well” is∼ 7 nm, beyond which the

graphene carrier density rapidly approaches the value predicted by the analytical model), contribu-

tions to drag from higher-nGr regions could also be important.

The same simulation was used to estimate the capacitance (and thus carrier density) of the metal-
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Figure 2.12: Equivalent capacitance circuit of SWNT‐graphene device. (a) Schematic of conductors and gate voltage. (b)
Circuit for local screening between graphene and SWNT. SWNT‐graphene capacitance is illustrated as two capacitors
because each conductor screens some of the gate electric field from the other. (c) Circuit for graphene capacitance far
from SWNT.

lic SWNT; this is its lower bound in Figure 2.9(b). Since this value may be sensitive to material pa-

rameters, such as the dielectric permittivity of the SWNT, the precise magnitudes of which we do

not know, we need an alternative approach to validate our calculation and estimate the possible

range of the capacitance value. For this purpose, we employ gate dependent data from a SWNT-

BLG device (Fig. 2.13(a)). Here the SWNT acts as a local gate on BLG, which was also coupled to

a gold top gate and silicon back gate. Since the device geometry is close to the SWNT-monolayer

graphene devices in which we measure drag, electrostatic measurements from the SWNT-BLG

device allow us to infer the capacitive coupling of the SWNT to monolayer graphene in the drag

devices. Particularly, by comparing the effects of the top and back gates on the BLG with the effect

of the SWNT gate, we can determine the degree of SWNT-BLG coupling, and therefore how to

account for the proximity of the BLG.We then rescale the results to account for the very slightly

different geometry of the SWNT-monolayer graphene devices being considered.
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Figure 2.13: (a) Optical microscopy image (upper panel) and cross‐section schematic (lower panel) of SWNT‐BLG device.
Scale bar is 10 nm. (b) BLG resistance as a function of back gate and top gate voltages. Dashed white line follows the
charge neutrality point and has slope dVbg/dVtg. Dashed red line indicate back gate voltage (0 V) and top gate voltage
range for panel (c). (c) BLG resistance as a function of top gate voltage and SWNT local gate voltage. Dashed white line
indicates secondary Dirac peak due to local gating of the BLG by the SWNT and has slope dVtg/dVNT.

For the SWNT-BLG device shown, which has a 4 nm-thick hBN flake separating the SWNT and

BLG and 1 μm of SiO2 between the heterostructure and back gate, the BLG resistance as a function

of back and top gate voltages (Vbg andVtg) is shown in Figure 2.13(b). The slope of the line tracking

the BLG charge neutrality point as the gate voltages are changed, dVbg/dVtg = −14.66, quantifies

the strength of the capacitive coupling to the top gate compared to the back gate (dVbg/dVtg =

Ctg/Cbg). Similarly, tracking the position of the side-peak caused by local SWNT gating while also

varying the top gate (Fig. 2.13(c)) gives the relative coupling of the BLG to the SWNT and top gate,

dVtg/dVNT = CNT/Ctg = −4.75.

We can model the effective geometric capacitance of the SWNT to ground as a series combina-

tion of back gate and BLG coupling (Fig. 2.12(a-b)):

C−1
eff = C−1

NT−bg + C−1
NT−BLG. (2.6)
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The first term can be calculated using the formula for wire-plane capacitance per unit length:

CNT−bg

L
=

2πε0εr
arccosh

(
2dbg
dNT

) , (2.7)

where dbg = 1 μm is the SiO2 thickness, dNT = 2 nm is the SWNT diameter, and L is the length of

the SWNT. The second term is estimated by the experimentally-determined coupling of the BLG to

the gate and SWNT:

CNT−BLG

A
=

Cbg−BLG

A
dVbg

dVNT
=

Cbg−BLG

A
dVbg

dVtg

dVtg

dVNT
, (2.8)

where Cbg−BLG/A = ε0εr/dbg is the standard parallel-plate capacitor formula.

At this point, we must account for the difference in hBN thicknesses between the BLG device (4

nm) and the SWNT-monolayer graphene drag device (2 nm). Noting that the dielectric thickness

enters the wire-place capacitance formula as 1/arccosh(2dBN/dNT), reducing the hBN thickness

from 4 to 2 nm simply requires multiplying the BLG device result by arccosh(2×4nm/2nm)/arccosh(2×

2nm/2nm) ≈ 1.567. Multiplying our adjusted CNT−BLG/A by dNT to convert it to capacitance per

unit SWNT length, we find Ceff/L = 6.11× 10−12 F/m for the geometric capacitance.

Finally, we must also account for the contribution from the quantum capacitance, which is par-

ticularly important for the SWNT. For a metallic SWNT, this has the simple form118

CNT
Q =

8e2

hvF
≈ 310× 10−12F/m. (2.9)

This is substantially larger than geometrical capacitance estimated above but can easily be included

in series with the geometric capacitance to give the total Cbg-NT/L = 6.00 × 10−12 F/m. The

intrinsic quantum capacitance of graphene, which is relevant for the regime in which we observe an
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appreciable drag signal, is given by15

CGr
Qi = βge

2kBTln(4), (2.10)

where βg ∼ 1.5 × 106 μm−2eV−2 is a material constant. In the temperature range where we can

access the linear response regime of Coulomb drag, CGr
Qi ≈ 4 to 8× 10−3 F/m, which is many orders

of magnitude larger than the geometric capacitance and can safely be neglected.

Figure 2.9(b) summarizes the estimated upper and lower bounds of the Fermi energies of graphene

EGrF and SWNT ENT
F . While the SWNT remains a heavily p-doped degenerate 1D conductor in the

experimental gate voltage range, our analysis suggests that EGrF is comparable to or even smaller than

kBT in the temperature range T > 100 K, where kB is the Boltzmann constant, for allVg where the

drag signal is measurable.

2.8 Comparison of SWNT-graphene Coulomb dragwith theory

Having noted the similarity of our data to results in graphene-graphene systems, it is useful to

more formally (if qualitatively) relate the charge carrier density dependence ofRdrag in the SWNT-

graphene system by comparison to perturbation theory for graphene-graphene drag88,119. Although

this theory cannot account for the mixed-dimensional nature of our devices, its applicability in a

broad range of carrier densities and temperatures make it a useful framework to understand some

of the behavior in our system. Furthermore, the discrepancies between the 2D-2D theory and 1D-

2D experiment may illuminate the ways in which dimensionality plays a role in the Coulomb drag

behavior.

In comparing our experimental data with theoretical models, it is critical to know the charge

carrier densities in the SWNT and graphene (nNT and nGr), as well as their relationship with the

chemical potential μ in each conductor. The net charge carrier density of single-gated graphene
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Figure 2.14: Band diagram of SWNT‐graphene heterostructure (a) atVg = 0 V (b) at positive gate voltage. Graphene
band filling is represented in dark (light) blue and SWNT band filling is represented in orange (yellow) for conduction
(valence) band. Adapted from Ref. 70.

heterostructures is generally well approximated by a parallel-plate capacitor formula:

nGr =
C(Vg − V0)

e
, (2.11)

whereV0 is the gate voltage of the graphene charge neutrality point (CNP) and C is the capaci-

tance per unit area between the gate and graphene. However, this formula ignores the effect of the

metallic SWNT on the local electrostatic environment of the graphene. Similarly, we cannot simply

apply the analytic formula for the capacitance between a wire and a conducting plane120 to estimate

nNT because the nearby graphene will substantially screen the electric field from the back gate, even

though it is not situated between the gate and SWNT. In addition, our experiments are performed

at relatively high temperature, so the approximation μ ≈ EF is not necessarily valid.

A more accurate approach to modeling the carrier densities and chemical potentials of the two

layers (neglecting momentarily the local gating effect of the SWNT on the nearest region of the
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graphene) starts with the coupling between the back gate and the conductors, given by:

eVg = μGr +
e2(nGr + nNT/2πrNT)

C1
(2.12a)

μGr = μNT +
e2nNT

C2
(2.12b)

where C1 is the capacitance per unit area between the graphene and back gate, C2 is the capacitance

per unit length between the SWNT and graphene, rNT is the radius of the SWNT, and μNT(Gr) is

the chemical potential of the nanotube (graphene). This is analogous to the single-gated graphene-

graphene drag device considered in70,88,119. The SWNT takes the role of the “top” (more heavily

screened) layer despite its position between the graphene and back gate because it is much closer

to the graphene than to the back gate (2 nm versus 1 μm). In contrast, the screening effect of the

SWNT on the graphene is significant but confined to< 10 nm on either side of the SWNT (see Fig.

2.11 and discussion of a finite element method based on COMSOL simulations in Section 2.7 for

more details). Figure 2.14 schematically illustrates the effect of the back gate on the graphene and

SWNT bands.

To verify that nGr, nNT are linearly proportional toVg, we can find the density n∗Gr at which the

electrical and chemical potentials become comparable (using a typical capacitance value C1 = 3.63×

10−5 F/m, obtained from our device geometry):

ℏvF
√

πn∗Gr =
e2n∗Gr
C1

→ n∗Gr ≈ 7× 106 cm−2, (2.13)

which is several orders of magnitude smaller than the residual impurity density, δn ∼ 1.1 ×

1010 cm−2, and corresponds toVg = 0.3 mV, smaller than the resolution of our gate voltage

sweep; thusVg ∝ nGr for all densities under consideration. Furthermore, the SWNT carrier density

does not seem to substantially affect the drag behavior, apart from reducing the magnitude ofRdrag
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as nNT increases (evident in lower magnitude of the h-h drag on the left side of the graphene CNP

compared to the e-h drag on the right side of the graphene CNP, e.g. in Figure 2.4(f)). We observe

essentially similar drag behavior regardless of the position of the SWNT conductance dip discussed

in Section 2.4.1, as long as it does not overlap with the CNP of the graphene channel. Since experi-

mentally, the SWNT is observed to be heavily p-doped, and remains degenerate,Vg ∝ nNT ∝ μNT,

considering the constant density of states of the 1D SWNT band structure15. It should also be

noted that, due to the chiral nature of graphene, the enhancement of electron-electron scattering

at matched Fermi wavevectors (when q = 2kF) that is typical in 2D electronic systems is not present

in graphene-graphene drag systems105. Investigation of such enhancement in the SWNT-graphene

system requires low-doping nanotubes and transport measurements near the nanotube CNP, an

avenue for future study.

We can now consider 3 possible regimes of drag response, based on μGr and T. When both are

small (μGr, kBT< τ−1, where τ(μGr,T) is the scattering time), the transport is disorder-dominated

and nGr becomes temperature-independent88:

nGr(μGr, kBT < τ−1) =
μGr
ℏv2Fτ

. (2.14)

The relevant expression for Coulomb drag in this regime is either

ρdrag(μGr, μNT ≪ T) ≈ 1.41α2
ℏ
e2
μGrμNT
k2BT2 , (2.15)

where α = e2/vF is the interaction strength, or at higher μNT (with μNT > μGr in our experiment),

ρdrag(μGr ≪ kBT ≪ μNT) = 5.8α2
ℏ
e2

μGr
μNT

. (2.16)

In either case, ρdrag ∝ μGr, and since we have established that μGr ∝ nGr ∝ Vg in this regime,
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the theory predicts ρdrag ∝ Vg. This prediction agrees with ourRdrag data for gate voltages close

to the graphene CNP (see for example Fig. 2.4(d),(f)). Due to the high SWNT hole density in the

accessible gate voltage range in our devices, as discussed in Section 2.4.1, we expect that the regime of

Equation 2.15 is not observed in our experiments.

At higher T, the graphene charge carriers close to the CNP (Tτ > 1, μGr ≪ T) are in the Dirac

fluid regime. In this case, the carrier density remains linear in μ but acquires temperature depen-

dence:

nGr(μGr ≪ kBT) =
1

ℏ2πv2F
4ln(2)μGrkBT. (2.17)

A similar relationship between ρdrag andVg holds as in the disorder-dominated regime, although the

temperature dependence is reduced by a factor of T (since now μGr ∝ nGr/T). However, since we

have relatively few data points in this regime, it is difficult to conclusively compare the theoretical

and experimental temperature dependences.

Finally, μGr ≫ kBT is the Fermi liquid regime, where nGr once again loses its temperature depen-

dence:

nGr(μGr ≫ kBT) =
1

ℏπv2F
μ2Gr. (2.18)

We must also consider the Fermi liquid expression for the Coulomb drag:

ρdrag(μNT > μGr ≫ kBT) ≈ α2
ℏ
e2
8π2

3
k2BT2

μGrμNT
ln
(
μGr
kBT

)
, (2.19)

which implies ρdrag ∝ T2/V1/2
g , neglecting any contribution from the SWNT.While this is quali-

tatively similar to the experimental behavior ofRdrag at higherVg (i.e. increasing with temperature

and decaying as a power law withVg), it does not align with a more quantitative analysis of the data

(which findsRdrag ∝ V−1
g toV−1.3

g at 140 K< T < 300 K; see Fig. 2.9(c)). This disagreement

suggests a more detailed theoretical analysis of the SWNT-graphene drag system is required to fully
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understand the mechanisms at play.

2.9 Distance dependence of Coulomb drag response in graphene

Finally, we studied the relationship between the drag signal strength and the distance of the graphene

voltage probes from the SWNT to see if we could find evidence of viscous electronic behavior. As

mentioned in Section 2.2, previous experiments have demonstrated signatures of hydrodynamic

electron flow from current injection into a rectangular graphene channel20,89,91, with discernable

effects even at room temperature20,91. Viscosity of the electron fluid causes the injected current to

draw neighboring regions along with it, resulting in a negative potential near the injection contacts

and creating current whirlpools in certain confined geometries13,89,91,121. Our SWNT-graphene

Coulomb drag device geometry should provide a unique experimental probe of hydrodynamic flow

of graphene charge carriers, as the current flowing in the SWNT generates a direct dragging force on

the graphene carriers without injecting current in graphene. This approach should have the benefit

of eliminating diffusive “spray” from the contacts that could mask hydrodynamic transport signa-

tures.

Figure 2.15(a) showsRdrag measured at pairs of voltage probes in the graphene channel laterally

displaced by distance x away from the SWNT.Rdrag decreases as x increases, becoming almost un-

measurable for x > 2 μm. In Ohmic transport, such a diminishing drag signal can be understood

with a diffusive model, where the escaping current density in the graphene just above the SWNT is

expected to decay as Jesc(x) ∼ e−πx/W, whereW is the channel width122. In the diffusive transport

regime, we therefore expect driving current in the SWNT to cause a drag voltage in the probes at

distance x away followingRdrag(x) ∼ e−πx/W. The inset of Figure 2.15(a) shows that the measured

Rdrag(x) follows such an exponential decay. We obtain the effective channel widthWeff by fitting

this functional dependence. Figure 2.15(b) showsWeff as a function ofVg. Interestingly, we find
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Figure 2.15: (a)Rdrag versusVg at T = 300 K for pairs of voltage probes at increasing distance x from the SWNT:
800 nm (circles), 1.2 μm (squares), 1.4 μm (triangles), and 2 μm (stars). Inset: Rdrag atVg = 24 V for increasing
distances. Dashed curve is an exponential fit. (b) Effective channel widthWeff versusVg, extracted from fit forRdrag at
T = 300 K. Dashed line marks actual device width (W = 1 μm)

Weff is larger than the physical channel widthW = 1 μm in our device when the graphene is in the

Dirac fluid regime, enhanced by about a factor of 2 at the CNP. Based on previous observations that

the electron fluid of graphene is highly viscous in this temperature range near the CNP89,123, the

increase inWeff may hint at a hydrodynamic contribution to the transport behavior. However, we

cannot rule out the possibility that other effects, such as long-range currents due to edge disorder124

may also play a role in the enhancedWeff.

These results summarize our extensive experimental study of mixed-dimensional Coulomb drag

between a SWNT and graphene. Our drag measurements in a SWNT-graphene heterostructure are

qualitatively consistent with momentum transfer between the drive and drag layers, although we

also observe an onset of nonlinearity due to local energy transfer combined with temperature de-

pendent drag effects at lower temperatures. Within the linear response regime, the dependences on

temperature, carrier density, and distance have subtleties that suggest an interplay of different mech-

anisms at work in this novel hybrid system. Further measurements with higher spatial resolution,
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such as current imaging20,94, would be necessary to gain a deeper understanding of the current flow

patterns, and samples with less disorder should amplify hydrodynamic transport signatures in the

graphene13.
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Love of learning is the most necessary passion ...in it lies

our happiness. It’s a sure remedy for what ails us, an

unending source of pleasure.

Émilie du Châtelet

3
Electronic thermal transport in carbon

nanotubes

Alongwith challenges, the carbon nanotube-graphene Coulomb drag experiment brought

opportunities for new kinds of devices and measurements by instigating the development of the

Rayleigh scattering spectroscopy, imaging and transfer tool (described in more detail in Appendix
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C). The ability to see individual suspended carbon nanotubes, determine their chiral indices, and

transfer them onto a target substrate with micron-level precision is rare, and we took advantage of it

to perform novel measurements of the electronic thermal conductance of metallic and semiconduct-

ing carbon nanotubes using graphene-based Johnson noise thermometry.37

3.1 Johnson noise thermometry in graphene

A conductor with finite electrical resistanceR hosting electrons with temperature Te will experience

voltage fluctuations* known as Johnson-Nyquist noise (or simply Johnson noise), that are classically

given by the Nyquist theorem40,125,126:

⟨V2⟩ = 4kBTeRΔf, (3.1)

where ⟨V2⟩ is the time-averaged mean-squared voltage and Δf is the measurement frequency band-

width. Measurements of Johnson noise can therefore be used to determine the electron temperature

of a system.

In two-terminal graphene devices, this method has been used to measure the electronic thermal

conductance18,40,41,127,128 by sending a current through the device, causing a temperature rise due

to Joule heating (schematically illustrated in Fig. 3.1). This method works well for “self-heating”

measurements of graphene because of low energy loss to phonons, the ability to make mesoscopic

devices with low contact resistance, and its tunability via electrostatic gating into a diffusive con-

ducting regime, where electronic diffusion cooling is the dominant channel for energy loss in a wide

range of bath temperatures37. Many materials for which electronic thermal transport measure-

ments could provide valuable information do not meet some or all of these criteria. In graphene

self-heating measurements, the graphene channel serves as both the heater and as the thermometer,

*or current fluctuations, if it is held at zero voltage
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Figure 3.1: Schematic of graphene self‐heating measurement with Johnson noise. Power applied in the form of current
through the two‐terminal graphene device causes Joule heating in the graphene channel, producing a parabolic temper‐
ature distribution in the absence of contact resistance and with the contacts fixed at the bath temperature. Measured
voltage noise is proportional to the average temperature of the electrons in the device.

but for other materials, it is more ideal to be able to create a thermal gradient across a device and

measure the temperature in at least two locations to determine the energy flow. Implementing this

concept with Johnson noise thermometry requires local measurements of the voltage fluctuations

across two resistors that are thermally coupled to two points along a mesoscopic sample (or to two

edges of a finite-width sample).

3.2 Multi-terminal noise measurements of thermal conductivity

One can extend two-terminal Johnson noise thermometry into a multi-terminal noise measurement.

Multi-terminal noise has been theoretically studied in a diffusive conductor with arbitrary geom-

etry129 (see Fig. 3.2 for an example system). The conductor has multiple leads held at a fixed bath

temperature (Tbath), and current is injected though one of the leads. Joule heating causes a tempera-

ture increase in the main body of the conductor. The noise power between any two terminals n and

m is

Snm =

∫ +∞

−∞
dt⟨δIn(t)δIm(0)⟩, (3.2)
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Figure 3.2: Schematic of multi‐terminal noise measurement. A diffusive conductor is connected to terminals held at
fixed Tbath. Finite‐element simulation of the temperature and current distribution, assuming uniform conductivity, is
shown in the color scale and streamlines, respectively. Without energy loss to phonons, the noise Snm measured at any
two terminals is given by a weighted function of the electronic temperature distribution Te (see Section 3.2).

where δIn and δIm are the fluctuation currents at terminals n andm. If the electrons are strongly

thermally equilibrated, so that a local electron temperature Te(⃗r) can be defined (the “hot electron”

regime), this relation can be written

Snm =

∫
d⃗r(∇φn · σ̂∇φm)Te(⃗r) =

∫
d⃗rgnm(⃗r)Te(⃗r), (3.3)

with the locally-defined weighting function gnm = ∇φn · σ̂∇φm defined via the local conductivity

σ̂ and the characteristic potentials φn and φm for each terminal of the device37,129. If energy losses

to phonons and other potential heat sinks are negligible, the noise at any terminal is therefore closely

linked to the energy flow to that region of the device and the associated electronic temperature dis-

tribution.

For measurements of the electronic thermal conductance of carbon nanotubes and other materi-

als, we fabricated devices with the geometry shown in Figure 3.3(a). There are two pairs of terminals
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Figure 3.3: (a) Schematic of device with two graphene thermometers and carbon nanotube bridge. Monolayer graphene
with an etched slit separating the two pieces rests on a bottom hBN layer. A carbon nanotube connects the hot and cold
side graphene pieces, and a local metallic top gate tunes the nanotube carrier density. (b) Composite optical and scan‐
ning electron microscopy image of an example device. Scale bar is 1 μm. The dashed yellow line shows the location of
the metal top gate. White arrows indicate the location of the nanotube, visible as a dark line in the composite image. (c)
Thermal circuit for a thermal conductance measurement. Joule power PJ

H is injected into hot side reservoir connected
by thermal resistanceRth

H to Tbath. The bridge thermal resistanceRth
bridge allows thermal currentQ to cross from the hot

to the cold side, connected to the bath byRth
C .
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on either side of a central conductor. Each pair contacts a rectangular piece of graphene, forming

two diffusive electronic thermometers. The central conductor, which need not be diffusive, bridges

the gap between the two rectangular thermometers at their midpoints. This configuration enables

us to realize the thermal circuit shown in Figure 3.3(b). A low-frequency current is injected into the

wider rectangle on the left, Joule heating the diffusive electrons. The local temperature is measured

both for this “hot side” (which is defined as TH = ΔTH + Tbath) and on the other rectangle on the

“cold side” of the device (TC = ΔTC + Tbath), where ΔTH and ΔTC are the temperature increases

on the hot and cold sides of the device, respectively, above the bath temperature Tbath. Energy cur-

rentQ crosses the bridge, heating the cold side at its center point. The energy current is equilibrated

at the cold side contacts, generating a peaked temperature distribution and non-local voltage fluctu-

ations. Combining measurements of these temperatures with the energy currentQ across the bridge

gives the two-terminal thermal conductance of the bridge,Gth
bridge =

Q
TH−TC

. The width of the

bridge is designed to be small compared with the length of the hot side so that it obtains a thermal

bias at the peak of the hot side temperature distribution. The wide hot side ensures a local temper-

ature distribution that is insensitive to the bridge, while the narrow cold side maintains a maximal

average TC for a givenQ.

While the measurement of the hot and cold side temperatures is the same as for a two-terminal

graphene device, the extraction of the energy current across the bridge requires more analysis. All

of the heating on the cold side of the device is a result of this energy current, so measuring its tem-

perature increase relative to the bath temperature will give us a measurement of the heating power

coming from the bridge, almost as if the same input power were the result of injected current in a

self-heating measurement37.

Consider energy currentQ injected at the midpoint of a rectangular cold side of length L and

widthWwith contacts thermalized to the bath, as shown in Fig. 3.4. We refer back to Fourier’s

law to relate the energy current density to the temperature increase via the thermal conductivity,
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Figure 3.4: Geometry for derivation of relationship between energy current across the bridge and cold side noise mea‐
surement. Energy currentQ (from the bridge) is injected at the midpoint of a rectangular two‐terminal device.

q = −κ∇T (note slightly different naming conventions from Section 2.5; q is the energy current

density). We can obtain the total energy current by integrating over the width of the cold side:

Q
2
=

∫ W

0
dx q⃗(x, y) · ŷ, (3.4)

where the factor of 1/2 comes from the assumption that half the energy current flows to each con-

tact. Assuming negligible energy loss to phonons, we can insert Fourier’s law:

Q
2
= −κ

∫ W

0
dx

dT
dy

. (3.5)

If we let Tbath = T(x, y = ±L/2) = 0 for simplicity, we can write the temperature distribution in

the sample to its derivative as T(x, y) = −
∫ y
0 dy

′ dT/dy′. Then, we can integrate both sides of Eq.

3.5 over y: ∫ y

0
dy′

Q
2
= −κ

∫ y

0
dy′

∫ W

0
dx

dT
dy′

, (3.6)

which becomes
Q
2
y = κ

∫ W

0
dx T(x, y). (3.7)
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Integrating again over y, we have

∫ L/2

0
dy

Q
2
y = κ

∫ L/2

0
dy

∫ W

0
dx T(x, y). (3.8)

The integrals on the right-hand side give the average of the cold side temperature distribution, ΔTC,

which can be found experimentally from a Johnson noise measurement of the cold side. Since the

total energy currentQ has no y-dependence, we can perform the integral on the left-hand side and

rearrange terms to find

Q =
8W
L

κΔTC. (3.9)

Finally, we can expressQ in terms of the cold side thermal conductanceGth
C = PCJ /ΔTs.h.

C , which

is obtained from an independent self-heating measurement with applied Joule power PCJ and re-

sulting temperature increase ΔTs.h.
C . Combining this with Eq. 3.8 and the self-heating result κ =

L
12WGth

C
40,41, we find

Q =
2
3
Gth
CΔTC. (3.10)

A more general derivation (for arbitrary cold side geometry) can be found in Ref. 37, along with an

alternative derivation of Eq. 3.10 using the effective thermal circuit model shown in Fig. 3.3(c).

It is crucial that each thermometer measures the local temperatures TH and TC without cross-

contaminating the signals, even though the two sides may be in electrical contact if the bridge is

conducting. An important innovation for this measurement method was the development of differ-

ential noise thermometry130. With this technique, noise from a differential bias applied to a sample

is amplified, bandpass-filtered, and integrated over a frequency range that can be adjusted by choos-

ing different components in an LC impedance matching circuit and appropriate filters, resulting

in a voltage signal proportional to the total noise power in the specified frequency band (between

100MHz and 1 GHz). A simplified schematic of a noise measurement circuit for these devices is

70



Figure 3.5: Differential noise thermometry circuit schematic overlaid on example device with graphene thermometers
and graphene bridge, all with separate metal top gates.

shown in Figure 3.5. For these multi-terminal noise measurements, non-overlapping bands used for

the hot and cold sides enable independent measurements of TH and TC. The amplified and filtered

signals are sent through a power detector that generates a voltage proportional to the integrated

high-frequency noise spectral density. By applying a low-frequency heating current at frequency f,

the temperature of the system is modulated at frequency 2f, and the output voltage is amplitude-

modulated at frequency 2f. The change in noise power amplitude due to the applied Joule power

can be isolated using lock-in amplifiers. After calibration (achieved by separate self-heating mea-

surements of the resistance and noise power of the hot and cold side thermometers at fixed tem-

peratures)130, the 2f noise power voltage signal is converted into a temperature rise above the bath

temperature, ΔTH,C. This method has been previously shown to enable sub-millikelvin precision

with a 30 second averaging time37,130.

Another critical detail for these measurements is ensuring the heating circuit is balanced such

that only energy currentQ and not charge current can cross the bridge from hot to cold side. A

schematic of the tuning circuit is shown in Figure 3.6. A low-frequency differential voltage excita-

tion is applied to the hot side with a lock-in amplifier, passing through a biasing resistor connected

to each terminal. At least one of these resistors must be tunable. The cold side terminals are con-
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Figure 3.6: Balancing circuit schematic for example graphene device.

nected and their commonmode voltageVunbal is measured at the frequency of the hot side excita-

tion. The tunable biasing resistor is adjusted to makeVunbal = 0; then we know that when a differ-

ential bias is applied to the hot side, no electrical current reaches the cold side. This circuit balancing

can also be adjusted to accommodate arbitrary thermal and electrical biasing conditions37.

From a materials perspective, graphene is an excellent choice of material for the hot and cold side

heater/thermometer sections of the device due to its strong interactions leading to fast temperature

equilibration, low energy loss to phonons, small electronic thermal conductance, and tunability

into a diffusive conducting regime18,37,40,41,127,130. As mentioned above, these enable Joule heat-

ing and accurate Johnson noise thermometry for the two-terminal hot and cold side segments of

the device, regardless of the behavior of the bridge. As such, the bridge material can be made not

only of graphene, but many other materials of interest. Using a carbon nanotube as a bridge was an

opportunity to test this measurement scheme in the ultimate 1D limit. We were also motivated by

the possibility of measuring thermal transport signatures of Luttinger liquid behavior131,132, the

strongly-correlated state that can arise in 1Dmaterials due to their extreme geometric confinement,

which has been observed in other measurements of carbon nanotubes4. Since the Coulomb drag

measurements discussed in Chapter 2 were made more difficult by large nanotube resistances (≳ 1

MΩ) compared to the graphene resistance, I will note a few differences in the device geometry that

improve the potential for high-quality electrical and thermal transport in the nanotube. The high

nanotube resistances in the drag devices were due to a combination of their length (typically tens of

microns), disorder on the SiO2 substrate, and suboptimal contact resistances17,133. For the multi-
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terminal noise measurement devices, we choose to measure nanotube bridges that are much shorter,

resting on hBN instead of SiO2, and with the electrical contacts formed by sections of graphene (the

hot and cold sides), so the resistance can potentially be much lower (although, as we will see, the

effects of disorder are not entirely mitigated).

3.3 Thermal transport device fabrication

The carbon nanotube (NT) growth and characterization process were the same as described in Sec-

tion 2.3. For these devices, we primarily targeted metallic NTs, but some semiconducting NTs were

also measured.

To form the graphene thermometer/heater sections, heterostructures of monolayer graphene

on top of a 20–60 nm hBN flake were prepared using the inverted stacking technique. This entails

picking up first the hBN flake, then the graphene flake using a PPC film on a PDMS stamp, then

peeling away the PPC film from the PDMS and depositing it on a SiO2/p-doped Si chip, with the

PPC film underneath the flakes. The PPC is then removed by high-temperature annealing in vac-

uum. The result is a clean graphene flake resting on hBN. A 200–500-nm wide,> 10-μm long slit

was then created in the graphene by defining a PMMAmask using e-beam lithography and etching

with O2 plasma in a reactive ion etcher (see Fig 3.7(a)). A second e-beam lithography step defined a

resist-free window above the heterostructure, while the rest of the chip remained coated in∼ 100

nm of resist, and carbon nanotube were transferred using the same method described in Section 2.3

(see Fig 3.7(b)). Since we could prepare starting graphene/hBN heterostructures much larger than

the individual devices, often several NTs were transferred to different sections of the stack, using the

same resist window. Subsequent fabrication steps defined the individual devices.

Following NT transfer, electrical contacts were made at the edges of the graphene following the

method reported previously9. The unwanted sections of the heterostructure were removed by re-
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Figure 3.7: (a) SEM image of inverted graphene/hBN heterostructure, after slit etch. Scale bar is 5 μm. (b) SEM image
after nanotube transfer and PMMA removal. The nanotube used for the device is indicated by the orange arrow as it
crosses the slit. Another nanotube was transferred but not used and is also visible. Scale bar is 4 μm. (c) Device after
fabrication of graphene contacts and etching of the hot and cold sides, before HSQ and top gate deposition. Scale bar is
2 μm. (d) Final device with top gate. Scale bar is 4 μm.
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Figure 3.8: (a) Current annealing of a semiconducting NT device. DC voltage bias. Black curve shows the initial mea‐
surement of current at both cold side terminals (shorted together) as a function of DC voltage biasVDC on the hot
side, with subsequent annealing measurements in purple, slate blue, medium blue, royal blue, green, yellow, orange, and
finally red, showing improvement in the bridge resistance fromRNT ≈ 850MΩ toRNT ≈ 600 kΩ. Measure‐
ments were performed in vacuum at room temperature. (b) Current‐voltage relationship for a device with a well‐coupled
metallic NT;RNT ≈ 10 kΩ.

active ion etching with CHF3 (Fig 3.7(c)). An insulating layer of 120 nm SiO2 was made above the

NT by e-beam lithography of hydrogen silsesquioxane (HSQ) resist and development with CD-26

developer. A final e-beam lithography step defined the mask for the local top gate above the NT,

which was formed by thermal evaporation of 3 nmCr/7 nm Pd/70 nmAu (using an angled, rotat-

ing stage to mitigate height differences between different parts of the structure). Figure 3.7(d) shows

a final device.

3.4 Johnson noise measurements of carbon nanotube devices

During initial measurements NT-graphene thermometry devices, we frequently observed a high

bridge resistance, sometimes up to hundreds of MΩ. This is attributable to disorder along the NT

and at the graphene-NT interface due to fabrication residue. We could substantially reduce the

bridge resistance by current annealing the NT, as shown in Figure 3.8(a). DC current was measured
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on the cold side while a DC voltage biasVDC applied to both contacts on the hot side was slowly

increased, until an upturn in the current was observed. This process was repeated until the current-

voltage relationship no longer changed between bias sweeps. Current annealing often reduced the

bridge resistance by several orders of magnitude. In some cases, we were able to achieve excellent

coupling between the NT and the graphene thermometers; Figure 3.8(b) shows a measured bridge

resistance of 10 kΩ, which is near the quantized value of h/4e2 = 6.45 kΩ allowed for the fourfold-

degenerate (spin and K/K’) 1D subband of a carbon nanotube17.

3.4.1 NT-graphene device calibration

Even after current annealing, NT bridge devices remained more disordered than similar devices

with a graphene bridge that were fabricated from a single graphene flake and fully encapsulated

in hBN. As a result, there was additional energy loss from the electronic system to the bath in the

NT bridge devices. We can see this by comparing measurements of the cold side temperature rise

ΔTC at constant applied power on the hot side PHJ while varying the gate voltage controlling the

cold side, schematically shown in Figure 3.9(a). This changes the cold side resistance, and should

have a corresponding effect on ΔTC. Fig. 3.9(b) shows the results of this measurement for a fully-

encapsulated graphene device: the Dirac peak in the cold side resistance is visible in the top panel,

and ΔTC in the bottom panel is indeed correlated with the resistance. For this thermal circuit (see

Fig. 3.3(c)), we expect ΔTC = QinGth
bridge/

∑
ij Gth

i Gth
j , so the decrease of ΔTC with increasingGth

C is

expected.

Fig. 3.9(d) shows the same measurement on a NT bridge device. The cold side Dirac peak in the

resistance (top panel) has the same qualitative behavior as the monolithic graphene device, but the

ΔTC behavior is quite different. ΔTC is lowest when the cold side resistance is highest, and increases

as the resistance decreases. We therefore postulate there is an additional mechanism of energy loss

to the phonon bath working to reduce ΔTC near charge neutrality, counteracting the effect of the
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Figure 3.9: (a) Top: circuit schematic for energy loss measurements. Joule power is applied to the hot side and temper‐
ature change is measured on the cold side as a function of cold side gate voltage (for the displayed device, this is local
top gate voltageVcold

g ). Bottom: stack for fully‐encapsulated graphene device. (b) Cold side graphene resistanceRC and

cold side temperature change due to hot side heating ΔTC as a function of local cold side top gate voltageVC
g . (c) Top:

composite optical and scanning electron microscope image of device with NT bridge (see Figs. 3.3 and 3.7 for details).
Bottom: device stack. (d) Cold side graphene resistanceRC and cold side temperature change due to hot side heating
ΔTC for NT bridge device as a function of global back gate voltageVbg.
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decreasedGth
C . Like the often-high initial NT resistance values, we believe that disorder due to fab-

rication residue on the un-encapsulated graphene plays a significant role in the excess energy loss to

the phonon bath, since previous work has shown larger energy loss in disordered, un-encapsulated

graphene compared to fully-encapsulated, cleaner devices18,40,41,127,130. When measuring NT bridge

devices, we kept the cold side near charge neutrality to minimize its thermal conductance, there-

fore maximizing its sensitivity as a power meter for small amounts of heat flowing through the nan-

otubes. Since this is precisely where the excess heat loss is most pronounced, we must interpret our

measured electronic thermal conductance values as lower bounds. While such a parasitic heat path

makes estimation of the absolute value of the thermal conductance challenging in our devices, rela-

tive measurement is possible by tuning the local top gate voltageVNT
g , keeping the hot and cold sides

at fixed carrier density.

3.4.2 Doping- and thermal bias-dependent thermal transport

We simultaneously measured the electrical and thermal conductances,GNT andGth
NT, of NT bridges

as a function of local top gate voltageVNT
g , shown in Figure 3.10. We found the two conductances

to be generally well correlated. In a device with relatively low channel resistance (Device 1, Fig.

3.10(a)), the electrical conductance shows a global minimum atVNT
g = 15 V at Tbath = 70 K,

corresponding to a small electronic bandgap; the thermal conductance shows similar behavior. With

decreasing bath temperature, rapid modulations were observed in both the electrical and thermal

conductance, becoming more pronounced at lower temperature. This oscillatory conductance in-

dicates the onset of Coulomb blockade through the disordered NT27. For temperatures above the

Coulomb blockade regime, the conductance was nearly temperature independent, demonstrating

the previously-observed weak electron-phonon coupling in carbon nanotubes (discussed further in

Section 3.4.3).

In a device with a larger bandgap and higher channel resistance (Device 2, Fig. 3.10(b)), the NT
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Figure 3.10: (a) Two‐point electrical and thermal conductance measurements of Device 1, which has a small‐bandgap
(metallic) NT, as a function of local top gate voltageVNT

g at different bath temperatures. Lower panels in each plot show
the corresponding Lorenz ratio LNT/L0 (green), together with the electrical conductance from the upper panel (dotted
light blue) to facilitate explicit comparison with LNT/L0. All thermal quantities are lower bounds, and the thermal
bias for all plots in ΔTH/Tbath = 0.1. (b) Two‐point electrical and thermal conductance measurements of Device 2,
which has a high‐resistance NT, at different bath temperatures. The corresponding inverse Lorenz ratio (LNT/L0)

1

is shown (green) in the lower panels, together with the electrical conductance reproduced from the respective upper
panel (dotted light blue). Top and middle panels have ΔTH/Tbath = 1; bottom panel has ΔTH/Tbath = 0.5. A DC
voltage of 30 mV was applied across the NT to overcome the contact barrier; the corresponding measured DC current
on the nanoampere scale led to negligible background heating and did not affect the measurements at the 2f heating
frequency. The insets show magnifications of Coulomb blockade peaks.
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is in a disordered Coulomb blockade regime. We observed sharp peaks alternating with vanishing

electrical conductance at lower temperatures (Fig. 3.10(b) bottom, inset). The thermal conduc-

tance remains highly correlated with the electrical signal, despite the much higher channel resistance

(RNT > 1 MΩ, equivalent to toGNT ≈ 10−3 e2/h). We were able to measure the corresponding

thermal conductance down to∼ 1% of the thermal conductance quantum at Tbath = 5 K. The

ability of detect electronic thermal transport in a system with far less than a single open quantum

channel demonstrates the high sensitivity of the graphene noise thermometers.

We can quantify the relationship betweenGNT andGth
NT by comparing it to the WF law (Eq.

1.12), computing the Lorenz ratio

LNT/L0 = Gth
NT/L0TGNT. (3.11)

For the higher-conductance device (Device 1), LNT/L0 was significantly higher than 1 for all mea-

sured gate and temperature ranges (lower panels in Fig. 3.10(a)), indicating a violation of the WF

law. This is consistent with previous measurements of quasi-1D systems33 and with several theo-

retical predictions for 1D thermal transport131,132,134. We note that the Lorenz ratio peaks when

there is a dip inGNT, indicating enhanced thermal conduction when electrical conductance is sup-

pressed. In the more resistive device (Device 2), this increased thermal conduction is easier to see

in the inverse Lorenz ratio (LNT/L0)
−1 (lower panels in Fig. 3.10(b)), which is strongly correlated

withGNT. The gate dependence of both signatures excludes contact resistance as the source of the

WF violation.

3.4.3 Electron-phonon coupling in NT bridge devices

Before discussing further measurements, I will show evidence that electron-phonon coupling is neg-

ligible in our NT bridge devices. We should first note that electron-phonon coupling in graphene

80



is weak in the temperature range we are considering (Tbath < 70 K)48, which means the ther-

mal bias is predominantly electronic and the energy injected into the device by Joule heating re-

mains in the electronic subsystem. As for NTs, it has previously been shown that they exhibit bal-

listic electronic transport up to room temperature, with neglible electron-phonon coupling and

temperature-independent electrical conductance135,136,137,138. Our data at temperatures higher than

the Coulomb blockade regime (Fig. 3.10(a)) are consistent with these findings.

Electron-phonon coupling in the NT would cause some of the electrons’ energy due to Joule

heating to transfer to phonons in the bridge. Since the cold side thermometer is, like the hot side,

simply made out of hBN-supported graphene, it measures only the electronic part of the energy

transported across the bridge. In the event of energy loss to phonons in the NT, less energy current

would reach the cold side thermometer, resulting in a lower apparentGth
NT and correspondingly a

suppressed Lorenz ratio LNT/L0. We instead observe an enhanced Lorenz ratio, consistent with

minimal energy loss to phonons in the NT. Some energy transfer could still be possible by cou-

pling NT phonons to graphene electrons, but this is a higher-order process requiring either remote

coupling of an NT phonon to a graphene electron or two weak coupling events (NT phonon to

graphene phonon and graphene phonon to graphene electron), and therefore highly unlikely.

This discussion has been premised on the idea that the hot and cold side thermometers do not

have appreciable electron-phonon coupling. It is possible for this to change, for example at higher

bath temperature, particularly near charge neutrality49. If that is the case, the hot side could excite

both electrons and phonons in the bridge, and the cold side would measure energy transport due to

both electrons and phonons. To confirm that these additional energy transfer mechanisms do not

come into play, we performmeasurements of Device 2 with the NT tuned into the single-particle

gap, shown in Figure 3.11. In this case, no charge should be present in the NT and no electron

transport is allowed, so we can shut off electrical conduction over a wide temperature range. We

apply a large thermal bias, ΔTH/Tbath = 0.4, and simultaneously measure the nanotube’s DC re-
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Figure 3.11: Nanotube electrical and thermal conductance in the bandgap. Top panel: nanotube resistanceRNT
as a function of bath temperature Tbath. Inset showsRNT as a function of local top gate voltageVNT

g , with red

dot indicating the gate voltage used in other panels. Bottom panel: Gth
NT as a function of Tbath, with thermal bias

ΔTH/Tbath = 0.4. Inset: measured cold side temperature rise ΔTC vs. Tbath.
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sistanceRNT, cold side temperature rise ΔTC, and NT thermal conductanceGth
NT as a function of

Tbath. RNT (top panel) remains high over the entire temperature range, but decreases from∼ 10

GΩ to∼ 100MΩwith increasing temperature. In contrast, bothGth
NT and ΔTC (bottom panel

and inset) remain almost indistinguishable from zero, with appreciable scatter in the data that only

slighly increases with temperature. The measured value of ΔTC of∼ 1 mK remains close to the

noise floor of the measurement. We conclude that non-electronic heat transport does not play a

significant role in the temperature range we have studied.

3.4.4 Temperature dependence of the Lorenz ratio

We continue our analysis of the NT bridge devices by considering the temperature dependence of

the electrical and electronic thermal conductances at constant NT doping and thermal bias, shown

in Figures 3.12 and 3.13 for four different values ofVNT
g . We consistently find that the electrical

conductaneGNT remains nearly constant upon sweeping the bath temperature between 5 K and

∼ 70 K (top panels). During the same measurement,Gth
NT is almost linearly increasing (middle

panels). The resulting Lorenz ratios LNT/L0 = Gth
NT/L0TGNT (bottom panels) show a uniform

trend for allVNT
g studied, decreasing from∼ 6 at Tbath = 5 K until∼ 20 K, then remaining

approximately constant at∼ 3. This sometimes appears to arise from decreasedGNT at low Tbath

(Figs. 3.12(b) and 3.13(b)) and sometimes from slightly sublinear behavior ofGth
NT (Figs. 3.12(a)

and 3.13(a)) in the same temperature range.

We can consider how our observations fit into theoretical predictions for electronic thermal

transport in 1D systems. Several models of Luttinger liquid thermal transport132,139,140 have L/L0

decreasing with increasing Tbath in a qualitatively similar way, in some cases saturating at the low-

est temperatures139 in addition to flattening out at higher temperatures. However, we do not find

quantitative agreement between our data and the theoretical models for thermal transport in a disor-

dered Luttinger liquid (due at least in part due to the thermometry issue discussed in Section 3.4.1).
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Figure 3.12: Temperature dependence of Device 1 at constant NT doping and thermal bias ΔTH/Tbath = 0.1. (a)GNT
(top panel),Gth

NT (middle), and LNT/L0 (bottom) as a function of Tbath atVNT
g = −5 V. (b) Same measurement as (a),

withVNT
g = 0 V. NT channel resistanceRNT = 1/GNT is shown.
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Figure 3.13: Temperature dependence of Device 1 at constant NT doping and thermal bias ΔTH/Tbath = 0.1. (a)GNT
(top panel),Gth

NT (middle), and LNT/L0 (bottom) as a function of Tbath atVNT
g = 5 V. (b) Same measurement as (a),

withVNT
g = 10 V.
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Our experiment provides a general guide to some possible connections with the theory.

3.4.5 Plasmon hopping through long-range interactions

In the highly-disordered limit, charge transport can be strongly suppressed. However, long-range

Coulomb interactions, which have previously been shown to significantly impact NT behavior4,141,

can open a new channel for energy transfer. We now discuss a new theory for plasmon hopping

mediated by long-range Coulomb interactions. The minimal version of the model consists of a 1D

conducting electronic system with an impenetrable barrier separating it into two parts. Without

electrons passing through the barrier, there is no energy transport via hot electrons, the typical heat

flow channel accounted for by theWF law. However, long-range Coulomb interactions can mediate

energy transfer across the barrier even without electrons tunneling through it. Specifically, plasmons

(density fluctuations) from the hot side couple to electrons across the barrier and induce density

fluctuations in turn, generating an energy current. This is schematically depicted in the inset of

Figure 3.14(b). This energy current depends on the temperatures on each side of the 1D conductor

as

Q ∝ T2
H − T2

C, (3.12)

which is modified toQ ∝ T4
H − T4

C when the model accounts for screening from a nearby metal

gate.

We can test the applicability of this model to our NT bridge devices by performing nonlinear

thermal transport measurements, shown in Figure 3.14. Previous measurements shown had small

thermal bias relative to bath temperature (ΔTH/Tbath ≲ 1) to ensure the system remained in

the linear response regime. Analogously to an electrical current-voltage curve measurement, we

measure the NT energy currentQNT up to a large thermal bias ΔTH. In Figure 3.14(a), showing

QNT as a function of ΔTH/Tbath for Devices 1 and 2 at representative local NT gate voltages and
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b

Figure 3.14: (a) Thermal current across the NT,QNT, as a function of scaled thermal bias ΔTH/Tbath for Device 1 at
Tbath = 70 K andVNT

g = 0 V (orange) and Tbath = 40 K andVNT
g = −10 V (yellow), and for Device 2 at

Tbath = 50 K andVNT
g = −19.4 V (purple, multiplied by 20 to enable comparison with Device 1 data). The brown

lines are fits to the plasmon hopping model. (b) Log‐log plot of NT thermal current versus thermal bias. Orange, yellow
and purple data sets are those shown in (a); also shown are data from Device 1 with Tbath = 6 K andVNT

g = −10
V (blue) and from Device 2 with Tbath = 30 K andVNT

g = −19.9 V (green). Red lines are fits to the plasmon
hopping model. Inset: schematic of plasmon hopping process. (c) Exponents extracted from the plasmon hopping model
fit versusRNT for Device 1 (crosses) at Tbath = 6 K (blue), 40 K (purple), and 70 K (red), and Device 2 (circles) at
Tbath = 30 K (blue) and 50 K (purple). Symbols without error bars have statistical error smaller than the symbol size.
Dashed vertical gray line is atRNT = h/e2.
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bath temperatures, we see a clearly superlinear increase inQNT for all data sets. Figure 3.14(b) re-

lates these measurements to the plasmon-hopping model via a log-log plot ofQNT + Q0 versus

(ΔTH + Tbath)/Tbath, whereQ0 = aTp
bath is a fitting parameter, and a is the proportionality con-

stant inQ ∝ Tp
H − Tp

C. The fits to the plasmon hopping model in Figure 3.14(a-b) are excellent,

with the linearity in (b) particularly suggesting well-defined power law behavior forQNT. Figure

3.14(c) shows the exponents p extracted from the slopes of these linear fits, which is between 2 and

6 and varies with the NT resistanceRNT. For Device 2, which has a more resistive NT such that

RNT ≫ h/e2, we find p ≈ 4, as predicted by the plasmon hopping model. This suggests that when

direct electron transport is highly suppressed, plasmon hopping with screened long-range Coulomb

interactions is an important contribution to energy transport through the bridge. For Device 1, the

NT is more conductive (RNT ≈ h/e2) and p is typically between 2 and 4. Since electron transport

is significant in this regime, further theoretical consideration will be required to fully explain the be-

havior. Our experiments do not correspond well with an existing theory for a disordered Luttinger

liquid with only short-range interactions140, which predictsQ ∝ (TH − TC)
4/3 and would give

p < 2. There is also one point at high NT conductance and high temperature that gives p ≈ 6,

suggesting yet additional mechanisms for energy transport beyond the theories considered. These

results highlight the need for further study of the relationship between long-range interactions and

electronic and heat transport in 1D systems.

3.5 Outlook

Through the measurements described in this chapter, and even more extensive experiments with

monolithic graphene devices, we have seen that it is possible to non-locally measure voltage noise

induced by electronic heat transport. Graphene noise thermometers enable highly-sensitive mea-

surements of electronic thermal transport in 2D van der Waals materials, 1D carbon nanotubes, and
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0D localized systems (the highly-resistive regime of NTs), in which we found evidence of interaction

effects changing the energy transport behavior. This technique makes it possible to study electronic

thermal transport in an array of low-dimensional systems. With careful consideration of their cou-

pling to the graphene thermometers, this thermometry method could provide insight into energy

transport in a wide variety of quantummaterials.
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The universe is full of magical things patiently waiting

for our wits to grow sharper.

Eden Phillpotts

4
Toward realization of the

Sachdev-Ye-Kitaev model in graphene

In the preceding chapters, we have seen that disorder played an accidental but important

role in the physical phenomena we were able to study. In the nanotube-graphene Coulomb drag

experiments, disorder led to high resistances in the nanotubes and suboptimal graphene carrier mo-
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bility, restricting the temperature ranges for our measurements and reducing the chances of conclu-

sively observing signatures of hydrodynamics. In the thermometry experiments, disorder along the

nanotube bridge created barriers to electron flow that could be overcome by the energy current via

Coulomb-coupled plasmons.

Some degree of disorder is all but inevitable in a real mesoscopic sample, and it is usually regarded

as a negative factor to be minimized. However, recent theory work142,143 suggests that engineered

disorder in a small graphene flake may, when tuned into a particular regime, enable us to experimen-

tally realize truly exotic and novel quantum physics: the Sachdev-Ye-Kitaev (SYK) model. Inspired

by these calculations and later predictions for specific charge and energy transport signatures of SYK

physics144, we made etched graphene quantum dot devices and studied the electrical conductance

and thermopower in the n = 0 Landau level of the quantumHall regime, where SYK physics

was predicted to occur. This represents the first experimental attempt to generate SYK physics in a

mesoscopic system.

4.1 “Black hole on a chip:” the Sachdev-Ye-Kitaev model

The SYKmodel63,64 describes a strongly-interacting, many-body quantum system in which all

of the constituent excitations (spinless fermions in the original version of the model proposed by

Sachdev and Ye63, Majorana fermions in Kitaev’s later modification64) are at the same energy and

have random, all-to-all interactions. The complex fermion version of the model is described by the

Hamiltonian142:

HSY =
N∑
ijkl

Jijkl c†i cjc
†
kcl − μ

∑
j
c†j cj, (4.1)

whereN is the number of fermions, c(†)i are fermionic annihilation (creation) operators, μ is the

chemical potential, and Jijkl are zero-mean complex random variables that satisfy Jijkl = J∗klij and

Jijkl = −Jjikl = −Jijlk. In the limit of largeN, the model is exactly solvable and describes a non-
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Fermi liquid (NFL) state, meaning the properties deviate from the expectations of Fermi liquid

theory due to strong quantum fluctuations near the Fermi surface145. This leads to exotic behavior

such as non-vanishing entropy in the low-temperature limit144,146. The SYKmodel has generated

tremendous interest among diverse subsets of the physics community, due to its potential applica-

bility to quantum critical phases in high-temperature superconductors, quantum information, and

quantum gravity.

A widely-found feature of unconventional superconductors, such as the cuprates, is a region

of linear-in-temperature resistivity over a broad range of temperatures above the superconducting

dome at Tc, known as the strange metal phase. Since the boundary between the superconducting

phase and the strange metal is defined by balancing the free energies of each phase, understanding

strange metals is key to unlocking the secrets of high-Tc superconductors. Strange metals have also

been suggested as a form of “holographic quantummatter” or “matter without quasiparticles”65.

Typical metals (described by Fermi liquid theory) have well-defined quasiparticles: long-lived, low-

energy elementary excitations which can be combined to create composite excitations. As a simple

example, an electron and a hole can pair to form an exciton; however this framework can be used

for much more complex and unusual composite excitations, such as composite fermions in the frac-

tional quantumHall regime60.

What, then, is “matter without quasiparticles?” To understand this, we can think about the char-

acteristic behavior of quasiparticles. Part of our concept of quasiparticles as well-defined excita-

tions is that they can collide with each other and eventually come into local thermal equilibrium,

with a characteristic timescale τeq. We can also think of this timescale as the time after which local

quantum phase coherence will be lost after a quasiparticle is initially created by an external pertur-

bation65. Using Fermi’s golden rule, it can be shown that this timescale has a 1/T2 divergence as

T → 0:

τeq ∼
ℏEF

(kBT)2
. (4.2)
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This leads to the ρ ∝ T2 resistivity observed in (metallic) Fermi liquid systems29. In a system

where the elementary excitations are not well-defined quasiparticles, τeq could conceivably be much

shorter. A lower bound on τeq has been proposed from several angles. One approach, derived from

quantum chaos66, relates it to the Lyuapunov time τL, which is the characteristic timescale for a

chaotic quantummany-body system to lose all information about its initial state; a hallmark of

chaotic systems is that measurements of an observable with an infinitesimal difference in initial

conditions will diverge as∼exp(t/τL). The theoretical lower bound on τL is65,66:

τL ≥ 1
2π

ℏ
kBT

. (4.3)

Separately, observations of Tc in a wide range of unconventional superconductors147 revealed a sim-

ple relationship between Tc, the superfluid density ρc (essentially, the strength of the superconduct-

ing state at T = 0), and the electrical conductivity σmeasured at roughly Tc; namely, ρc ∝ σ(Tc)Tc.

By recasting ρc and σ in terms of the superconducting and normal state plasma frequencies, respec-

tively, one finds that the characteristic timescale for dissipation near Tc is set by the temperature and

Boltzmann’s and Planck’s constants148:

τ(Tc) ≈
1
2π

ℏ
kBTc

. (4.4)

This empirical relation tells us that these strange metal systems have “Planckian dissipation,” ap-

proaching the quantum speed limit for how fast the energy of their excitations can be turned into

heat. Linear-in-temperature resistivity and Planckian or near-Planckian dissipation have since been

observed in a wide range of systems149,150,151, including above the superconducting dome in magic-

angle twisted bilayer graphene152. Understanding the origins of this remarkably simple relationship

is a key motivation in the study of strange metals. It also holds a great deal of interest for quantum
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information physicists probing the limits of entanglement processes and thermalization in quantum

systems153.

The discussion in the last few paragraphs has relied on general definitions of matter without

quasiparticles (a system in which τeq ∼ 1/T as T → 0) and empirical laws for some of their char-

acteristics (Planckian dissipation), without reference to a specific model that describes these sys-

tems. In fact,there are two theoretical systems that exactly reach the lower bound on τeq given by Eq.

4.3: the SYKmodel, and the holographic duals* of black holes in many theories of quantum grav-

ity65,146,154. Given their close connection, realizing the SYKmodel in a condensed-matter system

could provide some insight into quantum gravity (which is otherwise extremely difficult to experi-

mentally test), in addition to maximally-chaotic quantum systems more broadly and strange metals

in particular.

4.1.1 Realizing the SYK model in a graphene dot

While the SYKmodel is predicted to describe several quantum systems of interest, there has not yet

been an experiment that explicitly realizes the SYK or SY Hamiltonian (Eq. 4.1) in a condensed-

matter system. There have been numerous proposals for possible condensed-matter SYK platforms,

including ultracold atomic gases155, arrays of semiconducting wires (with Majorana fermions lo-

calized on the ends of each wire) coupled to a disordered quantum dot156, and 3D topological in-

sulators proximitized with a thin superconducting film157. Recently, nuclear magnetic resonance

experiments on short spin-1/2 chains158 that were engineered to simulate the SYKHamiltonian

withN = 8Majorana fermions successfully demonstrated some key signatures of NFL dynamics,

including instability with respect to certain types of four-fermion perturbations159. We focused on a

proposed realization of the Hamiltonian in a more familiar system: graphene.

*Holography duality refers to two systems that are related by the holographic principle, which states
that quantum gravity degrees of freedom in a d-dimensional space–time can be represented by a many-body
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Figure 4.1: (a) Single‐particle energy levels as a function of magnetic fluxΦ, calculated for a small graphene flake (in‐
set). The n = 0 LL is labeled LL0. (b) Typical wavefunction amplitudesΨj(⃗r) inside the n = 0 LL atΦ = 40Φ0 (bulk
modes) and outside (edge modes). Numbers above each panel display the energy of the state in eV, and the scale bar
shows the magnetic length lB =

√
ℏc/eB Adapted from Ref. 142.

In 2018, Chen et al.142 predicted based on symmetry arguments and numerical simulations

that, for a small graphene flake with an irregular boundary in a strong perpendicular magnetic

field, the behavior of the electrons in the n = 0 Landau level (LL) is described by the complex

SYKmodel. As mentioned in Chapter 1, the n = 0 LL of graphene is is a flat band that is particu-

larly robust to disorder due to chiral symmetry, making it a promising starting point for generating

SYK physics. Working in this topologically-protected flat band should minimize the most impor-

tant perturbation that would typically prevail over the SYK interaction, the two-fermion coupling

termH2 =
∑

ij Kijc†i cj (whereKij is the two-body interaction strength). The theory of Aharonov

and Casher57 showedN0 = BA/Φ0 zero-energy states in the LLL, where A is the flake area and

Φ0 = h/e is the magnetic flux quantum. An irregular boundary on the flake brings in a source of

randomness that can approximately preserve chiral symmetry142,154; in a small enough flake, this

randomizes the spatial structure of the electronic wavefunctions throughout the bulk of the flake,

as shown in Figure 4.1(b). The Coulomb potentialV(r) generates the leading-order term in the

system defined on its (d− 1)-dimensional boundary.154
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Hamiltonian, which in the absence ofH2 has the exact form of the SY Hamiltonian (Eq. 4.1) with

Jijkl =
1
2
∑
r⃗1

∑
r⃗2

Ψ∗
i (r⃗1)Ψ∗

j (r⃗2)V(r⃗1 − r⃗2)Ψk(r⃗1)Ψl(r⃗2), (4.5)

where Ψj(⃗r) are the electronic wavefunctions and without loss of generalityV(r) can take the form

of the Yukawa potential describing screened Coulomb interactions,

V(⃗r) =
e2

εr
e−r/λ, (4.6)

with dielectric constant ε and screening length λ. The simulations of Chen et al. found that the

resulting Jijkl were sufficiently random† to produce many-body level statistics characteristic of a

chaotic system, and saturating (near-constant above T = 0) entropy, critical hallmarks of the SYK

model. These simulations were carried out for an extremely small flake (∼ 10 nm diameter) in a

much larger magnetic field (∼ 3200 T) than is reasonably achievable, in order to produce sufficient

magnetic flux through the flake to generate a large numberN ≈ N0 of SYKmodes. However,

they predicted that their results could be straightforwardly rescaled to larger flakes. More recent

theoretical work161 modeling 60-100 nm diameter flakes in magnetic fields up to 20 T suggests

some important qualitative differences in this more experimentally-accessible regime. Notably, the

E ∼
√
B LL spectrum is replaced by a more quantum-dot-like energy distribution, although there

remains a flat band of states at zero energy that does not shift with B. Their simulations still showed

spatially randomized wavefunctions and sufficiently strong and random four-fermion interactions

Jijkl to expect that SYK physics could be observed in a graphene quantum dot flake under realistic

experimental conditions.

†This work shows that Jijkl have zero mean and are statistically uncorrelated pairwise, but not necessarily at
higher orders160. The numerical studies nonetheless reproduce key features of the SYKmodel.
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4.2 Theoretical predictions for transport observables of an SYK dot

Since an experimental realization of the SYKmodel in a small graphene flake seems within reach, the

next question is how to measure it. Various theoretical studies of an island or “dot” of SYKmatter

withN SYKmodes coupled to some numberM of peripheral “normal” Fermi liquid conducting

modes143,144,162,163 (schematically depicted in Fig. 4.2(a)) suggest it is important to haveN > M

and for the coupling to the peripheral Fermi liquid modes to be not too strong; typical models take

SYK-FL tunneling strengthV ≤ J/2, where J =
√
2N3/2⟨JijklJ∗ijkl⟩1/2 is the normalized real-valued

strength of the SYK interaction. In realistic systems, SYK physics is expected to exist at intermedi-

ate temperatures, where the thermal energy kBT is smaller than J, but J is larger than all of several

possible lower cutoff energy scales. First of all, J > kBT > Ecoh = t2/J, where t is the bandwidth

of single-particle states in the dot; if kBT < Ecoh, the system contains coherent quasiparticles and

is described by FL physics. A further requirement is J > t; otherwise SYK physics will not appear

at any temperature. Second, J > kBT > EC, where EC = e2/C is the charging energy (C is the

capacitance of the dot). For kBT < EC, Coulomb blockade begins to impact the behavior, although

it does not necessarily preclude observation of SYK physics144,162. Finally, kBT > J/N; the oppo-

site limit represents a different regime of quantum criticality dominated by Schwartzian quantum

gravity fluctuations144,164. These criteria inform the experimental design discussed in Section 4.3.

To distinguish between the regimes dictated by these energy scales, we are concerned with the

temperature dependence of quantities that can be measured with transport experiments; some key

theoretical predictions for this system from Ref. 144 are shown in Fig. 4.2 (b) and (c). Electrical

conductance is one of the simplest transport characteristics to measure, and is expected to scale

as σ ∼ 1/
√
JT in the SYK regime (Fig. 4.2 (b)). While this is different from a pure Fermi liquid

(∼ 1/T2), this temperature scaling is not nearly as distinctive as that of the thermopower S (Fig. 4.2

(c)). In the “pure SYK” regime, the expectation is S = 4π
3e E , where E is the electron-hole asymmetry
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a b c

Figure 4.2: (a) Schematic of an island of SYK matter with random four‐fermion interaction of mean‐squared strength J,
electron‐electron hopping of strength t, dimensionless particle‐hole asymmetry parameter E , and charging energy EC. It
is coupled to normal metal leads by hopping λi, characterized by an energy scale |λi|2× (DOS in leads). (b‐c) Crossovers
in electrical conductance (b) and thermopower (c) from the SYK regime at T > Ecoh to the FL regime at T < Ecoh.
Calculation assumes T,Ecoh ≫ EC, J/N. Adapted from Ref. 144.

in the SYKmodel146,144,162 defined by the derivative of entropy S with respect to carrier densityQ:

dS/dQ = 2πE . Since E is a temperature-independent constant of the system (for any particular

carrier density), this relation directly connects the finite low-temperature entropy of SYK system to

the temperature-dependent thermopower (although when kBT < t2/J, the system enters the FL

regime and the thermopower regains the typical FL temperature dependence S ∼ T). It should

be noted that that the predicted behavior shown in Fig. 4.2 assumes Ecoh ≫ EC, J/N in order to

produce FL behavior at low temperature; the predictions are modified if this assumption breaks

down, but the thermopower remains a relatively robust signature of SYK physics144. If we can meet

the energy scale and other coupling strength criteria, measurements of the electrical conductance

and thermopower as a function of temperature should provide good evidence of SYK physics in a

graphene quantum dot.
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4.3 Experimental design and dot device fabrication

Based on the considerations discussed in previous sections, we can delineate a set of requirements

for a graphene quantum dot device in which we hope to realize the SYKmodel. The “bulk” of

the dot should be clean, to minimize the single-particle bandwidth t and reduce chiral symmetry-

breaking disorder, but the edges should be irregular in order to create randomness in Jijkl. The dot

should be large enough that a significant number of SYKmodesN ∼ BA/Φ0 can be generated

by easily-available magnetic fields (B ≤ 10 T), yet small enough that the disordered edges can still

randomize the electronic wavefunctions throughout the bulk of the flake. We should attempt to

minimize the charging energy EC. Finally, the dot must be somewhat weakly coupled to two reser-

voirs with a small (M < N) number of conducting modes to probe the transport of charge and heat

across the dot.

These requirements are well-met by a quantum dot defined by reactive ion etching a rounded

constriction in a graphene Hall bar, with bottom and etch-separated top graphite layers to enable

independent control of the carrier densities in the dot and two coupled reservoirs. A schematic of

the fabrication process and device concept are shown in Figure 4.3(a-d), along with images of a final

device (4.3(e-f)). We have already noted that encapsulation of graphene in hBN significantly in-

creases carrier mobility8,9,47; adding graphite outside of the hBN layers further improves the device

quality by screening additional impurities165,166,167. Using a relatively thin hBN layer to separate

the graphene from the bottom graphite gate, we can increase the capacitive coupling between them

and hence reduce EC. Conventional electron-beam lithography and reactive ion etching methods

are known to generate disorder on the edges of etched graphene structures168,169, and can be con-

sistently used to fabricate etched graphene dots with diameters of approximately 100 nm. This cor-

responds to roughlyN ≈ 30 to 40 at B = 10 T. The remaining sections of the Hall bar on either

side of the dot are used as reservoirs of normal FL charge carriers. By etching away the top graphite
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Figure 4.3: (a‐c) Schematics of dot fabrication process. (a) Stack of van der Waals flakes used for the device: cover hBN,
top graphite, top hBN, graphene, bottom hBN, bottom graphite (listed from top to bottom), resting on SiO2/Si sub‐
strate. (b) Detail of dot definition by etching away cover hBN, top graphite, top hBN, and graphene, leaving an island of
graphene connected to two larger graphene reservoirs. A cross‐section of the etched stack along the red dashed line is
shown at right. (c) Detail of definition of separate reservoir top gates and ungated dot region by etching cover hBN and
top graphite above dot, with cross‐section. (d) Simplified schematic of device operation: separate top gates indepen‐
dently tune the filling factors of the dot and reservoirs (νdot, νres), and measurement of the voltage across the dot upon
application of electrical bias (temperature gradient) enables extraction of the electrical conductance (thermopower). (e)
Optical micrograph of an example device, with indications of substrate heater and bottom gate (BG) and top gate (TG)
contacts. Scale bar is 2 μm. (f) Atomic force microscopy image of the red‐outlined region in (e), showing etched dot and
separation of reservoir top gates.
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gate above the dot, we can separately tune the carrier densities of the dot and reservoirs such that,

in an applied magnetic field, the dot remains in the n = 0 LL (|νdot| < 2) and the reservoirs can

be set at constant integer quantumHall filling (for example νres = 2, where νdot(res) is the LL filling

factor of the dot (reservoir)). This provides a small number of charge-carrying modes to probe the

dot (M = 2νres), which can be easily kept withN > M at accessible magnetic fields. The coupling

between the dot and reservoirs can be tuned by adjusting their relative carrier densities as well. For

this device geometry, estimates of the relevant energy scales142,143,144,161 give t ∼ 0.35 to 1 meV

and J ∼ 3 meV, corresponding to lower cutoff energy scales t2/J and J/N both around 1 K and an

upper energy scale of around 30 K, a temperature range easily accessible in liquid helium cryostats.

The charging energy EC can vary significantly between devices, as it is determined by the dot size

and coupling to the graphite gates through the hBN dielectric layers.

We should note that numerous previous experiments have studied etched graphene quantum

dots169,170, including in high magnetic fields171,172,173,174, yet did not report any of the signatures of

SYK physics that we seek. Part of the explanation may be that the majority of this work was carried

out prior to the advent of hBN encapsulation, with devices resting on SiO2 substrates; too much

charged bulk disorder could have broadened all of the LLs too much to satisfy J > t. Another factor

is that the studies carried out with applied magnetic field did not include temperature-dependent

measurements, as they were focused on the evolution of the Coulomb blockade behavior. Some

earlier work169 demonstrated energy level statistics characteristic of chaotic Dirac billiards, but was

carried out in zero magnetic field. More recent studies of graphene quantum dots have shifted to-

ward electrostatically-defined dots in graphene175,176,177,178,179, in order to access single-electron

physics that is highly sensitive to disorder. While an intriguing area of study, this is movement away

from the putative SYK regime.
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4.3.1 Device fabrication

Many of the details of the fabrication process are the same as for other graphene-based devices de-

tailed in Sections 2.3 and 3.3. Graphene, graphite and hBN are mechanically exfoliated. Thick-

nesses of all of the van der Waals flakes except for graphene (i.e. hBN and graphite) are confirmed

using atomic force microscopy; monolayer graphene thickness is determined from optical contrast

with the 285 nm SiO2 substrate95. As before, a large hBN flake is picked up with a PPC film on a

PDMS stamp. This “cover hBN” flake is used to pick up subsequent layers: top graphite, top hBN,

graphene, bottom hBN, and bottom graphite. The final stack is represented in Fig. 4.3(a). We use

“top hBN” to denote the layer separating the graphene from top graphite to remain consistent with

the nomenclature for “bottom hBN” separating graphene from bottom graphite. The “cover hBN”

is necessary if using PPC, since PPC will not pick up graphite. Some other polymers, such as poly-

carbonate (PC) can pick up graphite as the first layer, in which case the cover BN can be omitted.

The PPC and stack were detached from the stamp by heating to 150 ◦C to melt the PPC, which is

then removed by high-temperature vacuum annealing.

The e-beam lithography and etching processes were slightly modified from previous devices to

incorporate the graphite gates and improve the resolution and selectivity of several steps. We use a

higher acceleration voltage lithography tool (125 kV as opposed to 30 kV) so as to to reliably create

higher-resolution features, such as∼ 100 nm diameter dots. In the first lithography and reactive

ion etching step, the cover hBN and top graphite are etched away everywhere except for the region

above the future Hall bar and contacts, and a region where the top graphite protruded from the

graphene and bottom graphite (to be used for contacting the top graphite without shorting to the

other layers). We use chemically-selective reactive ion etching processes to ensure the lower layers

would not be affected: SF6 to etch hBN and a weak (30W) O2 plasma for graphene and graphite.

Next, we deposit a substrate heater, in the shape of a narrow (∼ 400 nm wide, few-micron long)

102



rectangle of metal (5 nm Cr/70 nmAu) connected to two wider leads, on top of the stack where

the top graphite is etched, with the rectangle running parallel to the shorter end of the future Hall

bar and roughly 500 nm from the remaining top graphite gate. By passing a current through the

heater, we can create a temperature gradient across the dot, provided that the narrow rectangle is

the most resistive part of the heater and thus experiences the most Joule heating. The subsequent

nanofabrication steps (definition and deposition of contacts to the graphene and etching the stack

into a Hall bar) are the same as described previously, although care must be taken to ensure that the

top and bottom graphite layers and the graphene are all contacted separately, and none are shorted

to the others. It is necessary to define at least one contact to the bottom graphite gate and at least

two contacts to the top graphite gate on opposite sides of where the dot will be defined.

The final steps are removing the top graphite from above the dot region and etching to define

the dot. Compared to previous steps in the process, we use different resist recipes baked on a hot

plate for a longer period of time (for the gate etch, 950 PMMAA4 spun at 1000 rpm and baked for

10 minutes; for the dot etch, 950 PMMAA4 spun at 5000 rpm and baked for 20 minutes; typical

gate or stack etching processes used 950 PMMAA6 spun at 3000-3500 rpm and baked for 2 min-

utes) to improve the sturdiness of small features in the resist throughout the etching process. The

use of the selective etching recipes mentioned above also helps prevent accidentally etching through

additional layers of the stack. We first etch a∼ 100 nm-wide line across the width of the Hall bar

through the cover hBN (using SF6) and top graphite (using O2). The top graphite etch is performed

in∼ 30 second steps, stopping when the top graphite has been completely etched, as determined by

resistance measurements between the two top graphite contacts between each step (Fig. 4.3(c)). A

similar process is used to etch the dot, repeating the etch recipes and required etch times to remove

the cover hBN and top graphite, followed by another SF6 step to remove the top hBN and succes-

sive short (15 to 30 second) weak O2 steps to remove the graphene (Fig. 4.3(b)), stopping once the

graphene two-terminal resistance across the dot region increased dramatically (typically from a few
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kΩ to tens of kΩ). A final device with a 140 nm wide by 90 nm long dot (as determined by atomic

force microscopy) is shown in Figure 4.3(e), with an atomic force microscopy image of the dot re-

gion in Figure 4.3(f). For some devices, multiple dots were defined along the same Hall bar, with

independent contacts to the top graphite gates for each of the reservoir regions and typically a sub-

strate heater on each end of the device, so that the heater closest to the dot being measured could be

used to define the temperature gradient across the dot.

4.4 Electrical and thermoelectric response at zero magnetic field

Wewill now discuss the results of electrical and thermoelectric transport measurements in etched

graphene dot devices. Unless otherwise noted, the data presented are from the device shown in Fig.

4.3(e-f). The dot and reservoirs are separated from the bottom graphite gate by 5 nm of hBN, and

the hBN flake separating the reservoirs from the top graphite gate is 18.2 nm thick. The p-doped Si

beneath the SiO2 substrate is used to gate the regions of graphene immediately adjacent to the metal

contacts, which are not directly above or below graphite gates to avoid shorting. We refer to the

larger reservoir closest to the heater as the “upper” reservoir and the smaller reservoir on the other

side of the dot as the “middle” reservoir. There is a second, similar-sized dot and “lower” reservoir

with its own heater that was measured independently; the lower reservoir was kept floating during

measurements of the upper dot. The measurements were performed in a He-3 cryostat with a base

temperature of 345 mK and a maximummagnetic field of 10 T perpendicular to the sample.

Characterization of the electrical transport response for each of the three main regions of the de-

vice to the top and bottom graphite gates is shown in Figure 4.4. The resistance through the dot,

Rdot = 1/Gdot, is measured using the circuit sketched in Fig. 4.4(a) and shown in Fig. 4.4(b). We

see a main diagonal feature with the highest resistance (∼ 100 kΩ) and additional high-resistance re-

gions in two triangles above and below the main diagonal, outside of which the dot resistance drops
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Figure 4.4: Electrical transport in dot and reservoirs at B = 0 T, T = 350 mK. (a) Schematic of circuit for dot resis‐
tance measurements. (b) Four‐terminal dot resistanceRdot = Vdot/Idot = 1/Gdot, as a function of bottom gate voltage
Vbg and top gate voltageVtg; silicon gate voltageVSi = 28 V. Dashed line indicates approximate charge neutrality in
the dot. (c) Four‐terminal resistance of upper reservoir as a function ofVbg andVtg; silicon gate voltageVSi = 0 V.
(d) Three‐terminal resistance of middle reservoir as a function ofVbg andVtg withVSi = 0 V. Resistances are higher
because one of the voltage probes is the same as the source contact. The resistance peak aroundVtg ≈ −0.13 V is
caused by a region near the graphene contacts that is overlapped by the top graphite but not the bottom graphite. In‐
creasingVSi dramatically improves the resistance between the reservoirs and metal contacts and was employed for all
measurements except those shown in (c‐d).
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Figure 4.5: Electrical transport at B = 0 T with DC bias. (a) Four‐terminal dot conductanceGdot atVtg = 0.5 V as a
function ofVbg and DC bias voltageVDC. (b)Gdot atVtg = 0.5 V and several values ofVDC as a function ofVbg in
a wider gate voltage range. The charge neutrality point of the reservoirs is indicated by the red circle. (c) Histogram of
spacing of features in (b) data atVDC = 0, with peaks inGdot plotted in blue and minima in yellow. Poisson distribution
fits (solid lines) and Gaussian fits (dashed lines) are displayed in blue and orange for peaks and minima, respectively.

to∼ 1 kΩ. Comparing this to resistance measurements of the reservoirs shown in Fig. 4.4(c-d), we

can see that the main diagonal corresponds to the charge neutrality point (CNP) of the graphene

reservoirs. We further note that two reservoirs have the same capacitive coupling to the top and bot-

tom gates and essentially the same CNPs and electron mobility (∼ 60, 000 cm2/Vs at high carrier

density). The remaining higher-resistance features in Fig. 4.4(b) must therefore have their origins

in the dot. The correspondence of the two high-resistance regions on opposite sides of the reservoir

CNP, approximately delineated by the reservoir CNP and a nearly-vertical line crossing it (which

would correspond to the CNP of the dot region), suggests the peaks and dips in these regions origi-

nate from resonances in the dot when it has the opposite carrier type from the reservoirs (“pnp” and

“npn” regimes on the left and right sides of the reservoir CNP, respectively)180. This also matches

expectations based on the device geometry; the carrier density in the dot should be tunable via bot-

tom gate voltageVbg, and relatively insensitive to the top gate voltageVtg, though there will still be

some coupling due to fringing electric fields.
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To further investigate the resonances in the dot, we measured the four-terminal conductanceGdot

as a function ofVbg and DC bias voltageVDC, shown in Figure 4.5. Focusing on a small range of

Vbg inside the npn regime (Fig. 4.5(a)), we find thatGdot does not display a clearly-defined diamond

pattern typical of Coulomb blockade37,95,169,171,173,174. In particular, the conductance is never

strongly suppressed; expanding the range ofVbg under consideration (Fig. 4.5(b)), the only point

at whichGdot is near zero coincides with the reservoir CNP. This suggests that the features are more

like Fabry-Pérot resonances, which have been known to occur in similar electronic “cavity” regions

with different electron/hole density than their surroundings181,182. As an initial indication of the

degree to which chaotic dynamics are important in this dot, we track the spacing statistics as a func-

tion ofVbg in the npn regime (Fig. 4.5(c)). Level spacing for a non-chaotic quantum dot should be

described by the Poisson distribution, whereas for a chaotic system the level spacing statistics should

follow one of the Gaussian random ensembles169,183. While the number of features we were able

to track (determined by the voltages that could be applied to the graphite gates before the hBN di-

electric would start to break down) was too small to provide definitive statistics, the distributions

seem to fall between the Poisson and Gaussian fits, which is consistent with previous observations of

similarly-sized etched graphene quantum dots169 and suggests an emergence of chaotic behavior in

the dot due to disorder. Additionally, the typical feature spacing shows that the dot charging energy

EC is suppressed relative to similarly-sized graphene quantum dots without graphite gates.

We also measured the thermopower in various sections of the device at B = 0 T before em-

barking upon a detailed study of its temperature dependence at high magnetic field. Details of the

thermopower measurement technique are given in Appendix B. Briefly, we apply a symmetric AC

bias on the substrate heater to generate a temperature gradient ΔT, which we quantify by measuring

the lifting ofRxx minima in the reservoirs as a function of Tbath at zero bias on the heater or of the

heater excitation at constant Tbath. Since the Joule power in the heater is proportional to I2h, mea-

suring the voltage across the dot (or another part of the device with known ΔT) at the second har-
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Figure 4.6: Thermopower and comparison to Mott formula at B = 0 T. (a) Thermopower in upper reservoir SUxx (dark
blue) and Mott formula calculation (light blue) from measurements at T = 3 K andVtg = 0 V. (b) Thermopower across
dot Sdot and corresponding Mott formula calculation from measurements at T = 3 K andVtg = 0 V. (c) Sdot (dark blue,
left y‐axis) and corresponding Mott formula calculation (light blue, right y‐axis) from measurements at T = 31.4 K and
constant reservoir density nres = 4.8 × 1011 cm−2. (d) Same data as (c) but with Sdot rescaled by a factor of 15.55 to
account for difference in distance between calibration contacts dcal and actual dot length d, illustrated in inset.
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monic of the heater frequency, ΔVth, and dividing by ΔT enables calculation of the thermopower,

S = −ΔVth/ΔT.

Figure 4.6(a) shows the thermopower in the upper reservoir SUxx at Tbath = 3 K andVtg = 0

V. The shape and magnitude are consistent with previous measurements43,61,184. We compare the

measured thermopower to the semiclassical Mott formula (Eq. 1.13), which can be recast into a

more useful form by substituting electrical conductanceG for conductivity σ and noting the Fermi

energy is tuned byVbg:

SMott = −π2

3e
k2BT

1
G

dG
dVbg

(
dEF
dVbg

)−1
= −π2

3e
k2BT

1
G

dG
dVbg

2
ℏvF

√
e(Vbg − V0

bg)

πCdot/Adot
. (4.7)

For the second half of Eq. 4.7, we have made the additional substitution EF = ℏvF
√πnGr =

ℏvF
√

π(Vbg − V0
bg)/e(C/A), whereV

0
bg is the bottom gate voltage at the CNP and C/A is the ca-

pacitance per unit area. We find good agreement between the measured thermopower and the Mott

formula prediction in the reservoir; however, the agreement worsens when repeating the same ther-

mopower measurement across the dot at Tbath = 3 K (Fig. 4.6(b)). While some of the oscillatory

features appear correlated and the overall magnitude is similar, there are significant discrepancies

between the Mott formula prediction and the measured signal. Since the Mott relation is often bet-

ter obeyed by graphene at higher temperatures, we repeated the comparison at Tbath = 31.4 K and

constant reservoir density (nres = 4.8× 1011 cm−2), with the results shown in Fig. 4.6(c). The ther-

mopower measurement at higher temperature qualitatively showed a much closer correspondence

with the Mott formula calculation, but remained roughly the same magnitude as at Tbath = 3 K,

while the Mott relation has conventional scaling of thermopower with temperature, S ∼ T.

A possible explanation for this quantitative discrepancy could lie in a difference in where the

thermal voltage ΔVth experiences its most dramatic change, compared to where we determine ΔT.

Since we are measuring at constant nres, the resistance (and thermopower) of the reservoirs is con-
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stant, which means all the changes in the ΔVth signal come from the dot. However, we calculate ΔT

across the dot based on resistance measurements at the closest pairs of voltage probes in the upper

and middle reservoirs, which are dcal = 1.4 μm apart. This is much larger than the the “length”

of the dot, d = 90 nm. The heater has no electrical connection to the graphene and should pro-

duce a nearly-linear temperature gradient across the region of interest61,185,184, so the measured

temperature difference ΔTmust be rescaled. The same consideration does not apply to the reservoir

thermopower measurement in Fig. 4.6(a), since ΔVth and ΔTwere measured using the same con-

tacts and there is no constriction or junction between them to cause a more localized voltage drop.

When we rescale the measured thermopower by the ratio dcal/d, we find near-perfect agreement in

the npn regime (Fig. 4.6(d)) and good agreement elsewhere. Of course, applying such a rescaling

to thermopower data at all temperatures would make the disagreement between the measured Sdot

andMott relation in Fig. 4.6(b) quantitatively much worse. However, we note that Mott formula

violations in this direction (Smeas > SMott) have been observed in 100 nm graphene constrictions186

as a result of scattering from edge disorder, which is precisely what we have engineered in our sys-

tem. Furthermore, the Mott formula is not necessarily expected to predict the thermopower at finite

magnetic field, particularly if the system has entered the SYK regime144. For the remaining ther-

mopower data presented in this chapter, we will use the geometrically-determined rescaling factor

in reporting measured values of Sdot, with the assumption that the appropriate value depends only

minimally with B and T. This may impact quantitative agreement with the Mott formula, but not

the relative signal or the temperature dependence.

4.5 Dot measurements at finite magnetic field

Wewill nowmove on to discuss the behavior of the device in a perpendicular magnetic field. Figure

4.7(a) shows a simplified schematic of the measurement circuit for longitudinal resistance across
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Figure 4.7: (a) Simplified circuit schematic for dot electrical conductance measurements. Rdot
xx = Vdot/Idot contains

contributions from the dot and reservoirs, whileGdiag = Idot/Vdiag = νdote2/h for νdot < νres. (b) Upper reservoir
RU
xx as a function ofVbg andVtg at B = 10 T, Tbath = 350 mK, andVSi = 28 V. Resistance fluctuations on left

side come from pn junctions between the hole‐doped main channel and electron‐doped contacts. Dashed purple line
indicates center of νres = 2. (c)Gdiag as a function ofVbg andVtg at B = 10 T. Dashed purple line is the same as in
(b). (d)Rdot

xx as a function ofVbg andVtg at B = 10 T. Dashed purple line is the same as in (b). (e,f) Line cuts ofGdiag (e)
and dot thermopower Sdot = ΔVth/ΔT (f) along the dashed lines in (b‐d), plotted versusVbg. Vtg was simultaneously
varied to maintain constant reservoir filling νres = 2.
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the dotRdot
xx = Vdot/Idot and the diagonal conductanceGdiag = Idot/Vdiag. Separate measure-

ments of the longitudinal Hall resistance of the reservoirs at B = 10 T (Fig. 4.7(b) for upper

reservoir data; similar results were obtained for the middle reservoir) show the expected minima

at νres = 2, 6, 10, with less robust minima at the symmetry-broken integer fillings. Measuring elec-

trical transport through the dot in different configurations, we found thatRdot
xx (Fig. 4.7(d)) bears an

initial resemblance to the zero magnetic field data (Fig. 4.4(b)), with the high-resistance npn regions

becoming even more prominent and additional parallelogram-like features of near-zero resistance

(Rdot
xx ∼ 30 Ω) coinciding with parts of the most robust integer fillings in the reservoirs. The dot

controls the transmission of quantumHall edge states from one reservoir to another depending

on its doping relative to the reservoirs, acting essentially as a quantum point contact1,187. We fo-

cus on the diagonal conductanceGdiag (Fig. 4.7(c)) in the subsequent discussion because, except

when |νdot| ≫ |νres|, it only depends on the number of edge channels transmitted through the dot:

Gdiag = νdote2/h. Looking atGdiag as a function ofVbg andVtg at B = 10 T, we see near-vertical

strips ofGdiag ≈ 2, 6 when νdot ≤ νres. Regions of quantized conductance for symmetry-broken in-

teger states in the dot are generally less well-defined. Fig. 4.7(e) shows a line cut ofGdiag through the

center of the νres = 2 region. The reservoir edge states are fully transmitted for a significant range of

gate values, resulting inGdiag ≈ 2e2/h. On either side of this plateau, the conductance drops signif-

icantly and displays a series of peaks and dips. Measurements of the dot thermopower Sdot along the

same line (Fig. 4.7(f)) also show larger-amplitude oscillations in these regions, with a smaller signal

coinciding with theGdiag ≈ 2e2/h plateau. The thermopower results will be discussed in more

detail below.

First, since we are interested in the behavior of the dot in the n = 0 LL, it is important to identify

the corresponding gate voltage range. By comparing the electrical transport behavior in the quan-

tumHall regime across the dot (for example,Rdot
xx shown in Fig. 4.8(a)) and in the reservoirs (for

example,Gxy in the upper reservoir shown in Fig. 4.8(b)) as a function of the graphite gate volt-
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Figure 4.8: (a)Rdot
xx as a function ofVbg andVtg at B = 10 T (duplicated for reference from Fig. 4.7(d)). (b) Upper

reservoirGxy as a function ofVbg andVtg at B = 10 T. (c‐e) Illustrations of several different regimes of transport
through the dot. (c) For νdot < νres, reservoir edge states are completely or partially blocked. (d) For νdot ≈ νres,
reservoir edge states are fully transmitted. (e) For νdot ≫ νres, reservoir edge states are partially reflected.

agesVbg andVtg, we can deduce the filling factor in the dot from its transmission or reflection of

quantumHall edge states impinging on it from the reservoirs. Since the centers of quantumHall

plateaux occur at B = neh/eν60, and the carrier density in the dot (ndot) and reservoirs (nres) varies as

a function ofVbg andVtg, we can rewrite this relation to in terms of the relevant parameters:

B =
1

νdot(res)
h
e

(
α(Vbg − V0

bg) + β(Vtg − V0
tg)
)
, (4.8)

whereV0
bg,V

0
tg account for shifts of zero carrier density away from zero gate voltage and α, β are

constants proportional to the capacitance between the dot (reservoirs) and the bottom and top

gates, respectively.

The electrical transport through the dot can be classified into several regimes, illustrated in Fig.

4.8(c-e). When the filling in the dot is small compared to the reservoirs (c), particularly in the npn
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regime (νdot < 0, νres > 0), there is low transmission of edge states through the dot, except at certain

peaks, similar to the npn regime at B = 0. For small integer dot fillings with the same carrier type as

the reservoirs (0 < |νdot| < |νres|), the dot transmits an integer number of edge states equal to νdot.

When νdot ≈ νres (d), the dot becomes almost completely transparent to the reservoir edge states.

For the “nn’n” regime with higher dot filling |νdot| ≫ |νres| (e), the additional electron density in the

dot will start scattering the reservoir edges, reducing the conductance, which has also been observed

in graphene quantum point contacts187,188. Importantly for our efforts to realize the SYKmodel

in the dot, these results demonstrate that the gates can adjust the dot and reservoir fillings such that

we can access the n = 0 LL in the dot (|νdot| < 2) and several integer quantumHall states in the

reservoirs. In order to probe the maximum range of filling factors in the dot while remaining in a

well-defined quantumHall state in the reservoirs, we performed most of the electrical conductance

and thermopower measurements through the dot at constant reservoir filling νres = 2.

We return to examine the electrical and thermoelectric transport at varying ndot and B, shown in

Figure 4.9 for νres = 2. The x-axis of these plots is given in terms ofVbg; the top graphite gate volt-

ageVtg is simultaneously adjusted to keep the reservoirs at constant filling, with the exact relation

betweenVbg andVtg changing at each B. TheGdiag measurement (Fig. 4.9(a)) shows both reservoir

edge states are transmitted through the dot in a fairly wide range of densities down to |B| ≈ 4 T.

The npn and nn’n regimes show shifting patterns of oscillations as a function of B andVbg (∝ ndot),

reminiscent of previous studies of larger quantumHall pn and npn junctions189. At lower mag-

netic fields, the region of maximal conductance through the dot shrinks and the transport becomes

completely dominated by oscillations.

We can apply the Mott formula (Eq. 4.7) to these data and compare the result to our measure-

ments of Sdot in the same range of carrier density and magnetic field (Fig. 4.9(b) and (c), respec-

tively.) While the magnitudes differ significantly, partly due to the ΔT calculation and rescaling

questions discussed in Section 4.4, many patterns in the thermopower exhibit similarity between
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Figure 4.9: (a‐c) Evolution ofGdiag (a), Mott formula calculation for Sdot (b), and measured Sdot (c) as a function ofVbg
and B, withVtg simultaneously varied to keep the reservoirs at constant filling νres = 2. Measurements were taken at
Tbath = 3 K, νres = 2,VSi = 20 V. (d‐f) Comparison line scans of measured Sdot (dark blue, left y‐axis) and Mott
formula calculation (light blue, right y‐axis) with νres = 2 at various Tbath and B. (d) Tbath = 3 K, B = −10 T. (e)
Tbath = 3 K, B = −4 T. (f) Tbath = 31.4 K, B = −10 T. Thermopower data in (c‐f) has been scaled using the
geometric factor illustrated in Fig. 4.6(d).
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the calculation and the measurement. In the same region whereGdiag ≈ 2 andRdot
xx ≈ 0, the

thermopower is approximately zero; this makes intuitive sense, as a voltage change should not ap-

pear when the quantumHall edge states can move unimpeded through the dot. We also observe

many similar patterns in the oscillations in the npn and nn’n regimes. Taking a closer look at the

correspondence by examining line cuts as a function ofVbg at B = −10 T (Fig. 4.9(d)), we note

excellent qualitative agreement between the calculated and measured Sdot features forVbg < 0 (the

npn regime), some degree of correspondence for 0 < Vbg < 0.3, and generally worse agreement

at higher dot carrier densities. At B = −4 T (Fig. 4.9(e)), the agreement is better overall, although

forVbg < −0.2 there are more discrepancies in the relative peak magnitudes. On the quantita-

tive level, the measured thermopower Sdot exceeds the prediction of the Mott formula, particularly

at low temperatures. In addition to the edge disorder effects discussed previously, quantum dots

with an appreciable charging energy are expected to have a much larger thermopower than would

be expected from theMott formula (by a factor of kBT/EC in the “classical” regime kBT ≫ EC)190.

Although previous thermopower measurements in graphene have generally found better agree-

ment with the Mott relation at higher temperatures30,184, we actually observe larger deviations

from theMott formula prediction in the qualitative features (Fig. 4.9(f)). In particular, the mea-

sured thermopower modulations in the npn regime are much broader and smoother than would be

expected from the derivative of the electrical conductance. For a fuller picture of the transport be-

havior through the dot, we must examine the temperature dependence of the electrical conductance

and the thermopower.

Figure 4.10(a) showsGdiag with νres = 2 at B = −10 T as a function ofVbg, with corresponding

adjustments toVtg, and Tbath between 1.4 K and 31.4 K. (At higher temperatures, the doped silicon

back gate developed a significant leak current to the device when sufficient voltage was applied to

effectively dope the contacts.) TheG ≈ 2e2/h region retains a nearly constant width and conduc-

tance value across the entire temperature range. For the remaining analysis, we consider the longi-
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Figure 4.10: (a)Gdiag at B = −10 T and νres = 2 as a function of νdot and Tbath between 1.4 K and 31.4 K. (b) Line
plots ofR−1

dot versusVbg at various Tbath, indicated by the color bar. Gate voltage ranges for various Landau levels in the
dot are marked by color‐coded rectangles across the top of the plot. Purple: n = −1 LL. Dark blue: n = LL (hole side).
Light blue: n = 0 LL (electron side). Turquoise and yellow: n = 1 LL. (c‐e) Scatter plots of selectedR−1

dot peak and dip
values (c), averageR−1

dot between selected peaks and adjacent minima (d), and difference inR
−1
dot between selected peaks

and adjacent minima (e), as a function of Tbath, for features in the npn regime (n = −1 LL and hole side of n = 0 LL)
indicated by symbols in (b). Circles: Vbg = −0.147 V. Pentagrams: Vbg = −0.121 V. Squares: Vbg = −0.099 V.
Upward triangles: Vbg = −0.027 V. (f‐h): Same plots as (c‐e) for features in the nn’n regime (n = 1 LL) indicated by
symbols in (b). Diamonds: Vbg = 0.548 V. Hexagrams: Vbg = 0.578 V. Downward triangles: Vbg = 0.611 V.
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tudinal conductance across the dot,Gdot = 1/Rdot
xx (written asR−1

dot to avoid confusion withGdiag).

This has the same qualitative features asGdiag in its temperature and carrier density dependence in

the npn and nn’n regimes, and is more analogous to the thermopower measurement geometry than

Gdiag. Focusing on the npn and nn’n regimes (left and right sides of Fig. 4.10(b), respectively), we

can track evolution of theR−1
dot oscillations previously noted forGdiag in Fig. 4.7(e). We should com-

pare similarities and differences between the npn and nn’n regimes; at |B| = 10 T, the npn regime

contains the hole-doped side of the n = 0 LL (−2 < νdot < 0) as well as the upper part of the

n = −1 LL, while the nn’n regime (νdot ≫ 2) is in the n = 1 LL. Since the initial theory proposal

emphasizes the importance of the n = 0 LL for the emergence of SYK physics in graphene142, it is

essential to determine whether or not the behavior in that regime differs from other Landau levels.

To better quantify trends in the temperature dependence, we select some representativeR−1
dot

peaks in each doping regime (indicated by symbols above peaks in Fig. 4.10(b)). In the npn regime

(Fig. 4.10(c)),R−1
dot at each peak location stays at a nearly constant height between 1.4 K and 3 K,

decreases until at least 6 K, then eventually starts rising again. R−1
dot at the peak position νdot ≈ −2

(circles) decreases for the largest temperature range, up to 20 − 25 K, while the adjacent peaks at

smaller |νdot| (pentagrams, squares) have their lowest points at 10 K and the feature in the middle

of the hole-doped side of the n = 0 LL (νdot ≈ −1, upward triangles) begins rising at even lower

Tbath. We can see similar behavior in the nn’n regime (Fig. 4.10(f)), although the second transition

appears to uniformly occur at Tbath ≈ 5 K. Referring back to the traces ofR−1
dot as a function of

Vbg, it becomes evident that simply tracking the value ofR−1
dot at constant dot filling convolves two

separate trends: changes in the local average value with temperature, and the tendency of the peaks

and dips in the conductance to grow or shrink relative to the average value. To separate these, we

plot temperature dependence ofR−1
dot averaged between the selected peaks and adjacent dips (Fig.

4.10(d) for npn regime, (h) for nn’n regime) as well as the difference between adjacent peak and dip

values (Fig. 4.10(e) for npn regime, (h) for nn’n regime). Now we can see that, in the npn regime,
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the peak-dip differences all start at different values but follow essentially similar trends in the tem-

perature dependence, while the average value ofR−1
dot above 10 K rises faster and starting at lower

Tbath for smaller |νdot|. In the nn’n regime, theR−1
dot behavior follows similar trends, although the

oscillations smooth out more completely by Tbath = 10 K andR−1
dot rises more uniformly after that.

The generally increasing local averageR−1
dot with higher Tbath may have its origins in a decrease in the

tunneling resistance between the reservoirs and the dot, which is not accounted for in the theoretical

predictions for electrical conductance of an SYK dot143,144. Overall, the temperature dependence of

the electrical conductance at constant dot filling does not qualitatively match the theory for the pure

FL-to-SYK transition144 particularly well, and we note that similar behavior is observed for conduc-

tance peaks in the n = 0 LL (npn regime) and the n = ±1 LL (nn’n regime and more negativeVbg

range in the npn regime).

We repeat the same temperature dependence analysis for the thermopower, shown in Figure 4.11.

In both a color plot of Sdot as a function ofVbg (νres = 2) and Tbath and individual line scans (Fig.

4.11(a,b)), there is a clear transition from rapid, sign-changing oscillations in both the npn and nn’n

regimes at Tbath ≲ 6 K and broader modulations for Tbath ≥ 10 K that remain negative for the

visible part of the n = −1 LL and the hole-doped side of the n = 0 LL (νdot < 0), are positive

for the electron-doped side of the n = 0 LL and into the n = 1 LL (0 < νdot < 4), and become

negative again further into the n = 1 LL (νdot > 4). At low temperatures, each peak inR−1
dot splits

into a peak and a dip roughly centered at the corresponding filling, which we already saw manifested

as the good qualitative correspondence between the measured thermopower and the Mott formula

(see Fig. 4.9). We track the behavior of the peaks and dips corresponding to theR−1
dot peaks marked

in Fig. 4.10(b). In the npn regime (Fig. 4.11(c-e)), both the local average and the peak-dip difference

increase to peak at Tbath ≈ 3 K, with the peak-dip difference then decreasing to zero and the average

settling to a negative value by 10 K. Fig. 4.11(d) also tracks the average value of Sdot on both the hole-

doped and electron-doped sides of the n = 0 LL, with error bars reflecting the magnitude of the
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Figure 4.11: (a) Sdot at B = −10 T and νres = 2 as a function ofVbg and Tbath between 1.4 K and 31.4 K. (b) Line
plots of Sdot versusVbg at various Tbath, indicated by the color bar. Gate voltage ranges for various Landau levels in the
dot are marked by color‐coded rectangles across the top of the plot. Purple: n = −1 LL. Dark blue: n = 0 LL (hole
side). Light blue: n = 0 LL (electron side). Turquoise and yellow: n = 1 LL. (c‐e) Scatter plots of selected Sdot peak
and dip values (c), average Sdot between selected peaks and adjacent dips (d), and difference in Sdot between selected
peaks and adjacent dips (e), as a function of Tbath, for features in the npn regime (n = −1 LL and hole side of n = 0
LL) indicated by symbols in (b). Features were selected to fall on either side ofGdiag peaks tracked in Fig. 4.10. Circles:
Vbg = −0.138 V (dip: Vbg = −0.149 V). Pentagrams: Vbg = −0.117 V (dip: Vbg = −0.122 V). Squares:
Vbg = −0.094 V (dip: Vbg = −0.099 V). Upward triangles: Vbg = −0.025 V (dip: Vbg = −0.030 V). In (d),
additional symbols show average Sdot in the n = 0 LL, separated into hole side (−1.5 < νdot < −0.5, dark blue
asterisks) and electron side (0.5 < νdot < 1.5, light blue squares). Error bars are derived from standard deviation
within this range. (f‐h): Same plots as (c‐e) for features in the nn’n regime (electron side of n = 0 LL and n = 1 LL)
indicated by symbols in (b). Diamonds: Vbg = 0.543 V (dip: Vbg = 0.559 V). Hexagrams: Vbg = 0.572 V (dip:
Vbg = 0.581 V). Downward triangles: Vbg = 0.610 V (dip: Vbg = 0.619 V). In (g), additional symbols show average
Sdot in the n = 1 LL, separated into positive (2.5 < νdot < 3.5, turquoise triangles) and negative (νdot > 4.5, yellow
pentagrams). Error bars are derived from standard deviation within this range.
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fluctuations (and therefore becoming smaller at higher temperatures). The LL-averaged values of

the thermopower have their minimum amplitude at T ≈ 3.7 K, separate to essentially constant

magnitudes between 10 and 20 K, and move back toward smaller values at higher temperatures.

There is some uncertainty in the exact Sdot magnitude due to lower signal-to-noise ratio at higher

Tbath in the quantumHall thermometry measurements used to determine ΔT (discussed further in

Appendix B). It is possible that deviations in Sdot and the average value from the constant negative

(positive) value predicted for thermopower of a hole-doped (electron-doped) SYK island144 are

due at least in part to experimental uncertainty in this temperacture calibration process. However,

differences between features at varying dot carrier densities cannot be explained by ΔT uncertainty;

we note that largest (negative) values of the local average Sdot occur for νdot ≈ −1 in the higher

temperature range, while the peaks in the peak-dip difference at low temperature are highest at larger

|νdot|.

In the nn’n regime (Fig. 4.11(f-h)), the peak-dip averages and peak-dip differences of Sdot both

spike slightly earlier than in the npn regime, at Tbath = 2.3 K. The differences drop sharply to

zero by 5 K, while the averages converge toward zero until 3.7 K, then diverge to fluctuate around

positive values for νdot < 4 (diamonds) and negative values for νdot > 4 (downward triangles). The

values of Sdot in the n = 1 LL averaged over a range of filling factors before and after this sign change

(turquoise triangles and yellow pentagrams, respectively, in Fig. 4.11(g)) show qualitatively similar

behavior to the averages in the n = 0 LL, although the decrease in magnitude seems to occur start at

lower temperature.

We note several minima and sign changes of Sdot in the higher-temperature data, which are par-

ticularly evident on the color plot (Fig. 4.11(a)): a sign change at νdot ≈ 0 and at νdot ≈ 4, with

an Sdot ≈ 0 minimum for νdot ≈ 2 in the otherwise positive region between them. These begin

to emerge at Tbath = 4.5 K, and the sign changes persist throughout, while the additional mini-

mum begins to weaken for Tbath > 20 K. The sign change at charge neutrality in the dot and the
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minimum at νdot ≈ 2 are reminiscent of thermopower measurements of graphene flakes and Hall

bars in the quantumHall regime, which has peaks in Sxx at half-filled LLs with the aforementioned

quantized values (kBe/h)ln(2)/ν and minima43,61. There is a less-developed local minimum near

νdot ≈ −2 that would agree with this picture, but the sign change in the middle of the n = 1

LL is different from the previous observations in simpler graphene systems. The thermopower of

a Coulomb-blockaded quantum dot exhibits a peak-dip pair centered at each resistance peak190,

which is essentially true of our measured Sdot at low temperature only. In general, our thermopower

measurements in the n = 0 LL are in many ways consistent with a transition from FL to SYK

behavior at Tbath ∼ 3 K described in Ref. 144 (see Fig. 4.2(c)), within the uncertainty of our

data. However, the lack ofG ∼ 1/
√
T behavior and the similarities in both condutance and ther-

mopower measurements between the n = 0 and n = 1 LLs warrant further consideration.

4.6 Discussion

According to recent theoretical models142,143, the combination of confinement and edge disorder in

the n = 0 LL of a small graphene flake has been predicted to approximate the SYKHamiltonian,

which has some distinctive transport signatures144. We attempted to test this prediction by mea-

suring electrical conductance and thermopower in an etched graphene quantum dot coupled to the

quantumHall edge states in a larger device. Using a combination of graphite gates, we were able to

tune the carrier densities of the dot and reservoirs into the n = 0 and n = 1 LLs in the dot, while

keeping the reservoirs at constant filling factor νres = 2. Notably, both our conductance and ther-

mopower measurements showed qualitatively similar behavior in most respects between the n = 0

LL, where we expected SYK physics to potentially appear, and the n = 1 LL, which we expected not

to host SYK physics because it lacks the special protection from disorder broadening of the lowest

LL. However, this argument assumes that our engineered disorder preserves chiral symmetry, which
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Figure 4.12: Crossovers in transport from the SYK regime at T > J/N to finite‐N regime at T < J/N: (a) electrical
conductance and (b) thermopower. It is assumed that T, J/N ≫ Ecoh,EC. The calculation uses J = 1, E = 0.05.
Adapted from Ref. 144.

Chen et al. argue is best achieved by an extremely clean “bulk” of the dot with a random edge142. In

a real device, there are many possible sources of chiral symmetry-breaking disorder, including ran-

dom on-site potentials induced by fabrication processes191. The absence of fractional quantumHall

states even in the reservoirs of our devices at low temperature (350 mK) and high magnetic fields (10

T) and the fact that the n = 0 LL does not appear to be more sharply defined than other LLs sug-

gest that a degree of non-engineered, chiral symmetry-breaking disorder remains. If chiral symmetry

is not preserved, the n = 0 LL is not necessarily much more favorable for the emergence of SYK

physics than other LLs. As such, the parallels between the transport signatures in the n = 0 and

n = 1 LLs should not be interpreted as counterevidence for the possibility of SYK behavior in the

dot.

We have already noted that both the electrical conductance and the thermopower of the dot un-

dergo transitions in their temperature-dependent behavior from large, rapid oscillations at Tbath ≲

4 − 5 K to smaller and broader modulations at Tbath ≳ 5 K. This is well-aligned with what we

would expect for a crossover from coherent transport (for example, universal conductance fluctua-

tions1,192) to incoherent SYK behavior, the T < Ecoh to T > Ecoh discussed in Section 4.2. How-

ever, the increasing electrical conductance in the putative T > Ecoh regime is clearly different from
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the prediction ofG ∼ 1/
√
T shown in Fig. 4.2(b). A likely source of this discrepancy is finite-N

corrections to the SYK physics, which we had initially assumed were insignificant compared to Ecoh.

For our 140 nm by 90 nm dot at B = 10 T, the approximate number of SYKmodesN0 = BA/Φ0

is only 33, which is far from the conformal limit (N → ∞). With finite-N effects, the electrical con-

ductance changes from uniformly decreasing with increasing temperature asG ∼ 1/
√
T to include

regimes where the conductance increases with temperature (Fig. 4.12(a)), which is more consis-

tent with our experimental observations. In contrast, decreasingN causes the thermopower to take

longer as the temperature increases to saturate at a constant value (Fig. 4.12(b)), but it qualitatively

remains very close to the expectation with Ecoh ≫ J/N (Fig. 4.2(c)). Further theoretical study of the

effects of competing lower energy scales, and finite-N corrections in particular, could improve our

understanding of the crossover from SYK to coherent physics and whether our experiments provide

robust evidence of such a transition occurring in an etched graphene flake.

In addition to finite-N corrections, we may need to consider the charging energy as a competing

energy scale. We specifically designed our devices with relatively thin (∼ 5 nm) hBN between the

graphene and the graphite gate tuning the carrier density in the dot. Based on the thickness of the

hBN, its dielectric constant εr ≈ 4188, and the dot size, we would roughly estimate the charging

energy EC = e2/Cdot to be on the order of 1 K. However, from the spacing of quantumHall-related

features in the dot and reservoir transport (Fig. 4.8), the capacitance we extract gives the charging

energy EC ≈ 2.8 meV, or 32 K. This corresponds to an unexpectedly low capacitance, but it is

consistent with the capacitance between the graphite gates and the reservoirs, based on quantum

Hall measurements of the reservoirs. It is possible that the graphite flakes used for the gates were too

thin to behave as a pure metal; a lower density of states in the graphite gates could cause a substantial

quantum capacitance contribution193.

Another practical difficulty was the inability to directly measure the temperature gradient across

the dot, which ties into more general device design considerations. Continuing this line of mea-

124



surements, we can suggest a few changes that may provide additional flexibility. It may be useful

to reconfigure the contacts to the reservoirs so that it is possible to measure ΔT due to the heater at

more locations, providing a better map of the temperature gradient and thus a better estimate of the

gradient across the dot. We can also imagine changing the geometry so that the dot density is tuned

by a local top gate, contacted using an air bridge; this may be more convenient for precisely adjust-

ing the carrier density in the dot, and the additional nearby metal could help reduce EC. Defining

the dot using local anodic oxidation194 on a graphene flake prior to encapsulation would reduce

the number of lithography steps, and may generate the appropriate randomness on the edge while

reducing undesirable contamination of the rest of the device.

Experimental challenges notwithstanding, our measurements already represent a significant step

toward realization of the SYKmodel in a mesoscopic system. We see promising signatures in our

measurements of a transition from rapid fluctuations (which, in the case of the thermopower, are

highly temperature-dependent) to more broadly-varying conductance and thermopower (which

becomes much less temperature-dependent) in the temperature range predicted for our quantum

dot size and applied magnetic field161. Further experimental and theoretical analysis of this transi-

tion regime, including temperature-dependent conductance and thermopower fluctuations, may

differentiate disorder-induced phase fluctuations in the finite-N FL regime (universal conductance

fluctuations1,192) from the strongly-correlated, incoherent SYK regime.
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By using your intelligence, you can sometimes make your

problems twice as complicated.

Ashleigh Brilliant

5
Outlook and future directions

Unusual quantum effects can emerge in mesoscopic systems as a result of the interplay of dimen-

sional confinement and Coulomb interactions. In this thesis, we have explored three examples of

novel phenomena arising in mixed-dimensional devices, probed by electronic and thermoelectric

transport measurements. In Chapter 2, we showed that the 1D-2D nature of a carbon nanotube-

graphene device appears in the Coulomb drag between these two conductors. In Chapter 3, our

electrical and thermal conductance measurements of single carbon nanotubes, using graphene as
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heater, thermometer, and electrode, were the basis for developing a newmodel for plasmon-enabled

energy transport through barriers to charge flow. In Chapter 4, we discussed electronic and thermo-

electric transport measurements of an etched graphene quantum dot in the quantumHall regime,

motivated by the potential to realize the SYKmodel. We will close with a few remarks on future

directions.

The carbon nanotube-graphene system remains an option for studying graphene hydrodynamics

probed via Coulomb drag, but there are plenty of other possibilities for this type of device. Carbon

nanotubes have great utility as charge sensors14 and local gates95,195. As the ability to cut or other-

wise manipulate materials using atomic force microscopes tips has continued to advance, a precisely

placed metallic carbon nanotube could be bent into a shaped gate to constrain the flow of chiral

edge states or hydrodynamic electrons, or a have small section cut between two contacted ends to

form an extremely thin quantum point contact. As a flexible mesoscopic conductor with effectively

1D electronic confinement, carbon nanotubes have great potential to be creatively integrated into

otherwise 2D or 3D devices.

Graphene-based Johnson noise thermometry has proved to be a useful technique for thermal

conductance measurements of a variety of quantummaterials. For further experiments incorpo-

rating carbon nanotubes, fully hBN-encapsulated or suspended nanotube bridges could move the

study of 1D thermal transport into a less disorder-dominated regime. This would enable further

exploration of Luttinger liquid thermal transport, as well as the thermal side of other phenomena

electronically observed in carbon nanotubes, such as the Kondo effect196, which has appeared in

nanotube quantum dots.

As for the possible implementation of the SYKHamiltonian in graphene, we have already men-

tioned several possible modifications to the experimental geometry and fabrication process that

could improve future devices. Taking a wider view, we note that the geometry of the device, two

graphene reservoirs connected by the dot, is essentially the same as the graphene-based noise ther-
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mometry devices described in Chapter 3, though there are many differences in the details. It would

be intriguing to perform thermal conductance measurements of etched graphene quantum dots

as a further test of the theory. Capacitance measurements of the evolution with temperature and

carrier density of the dot chemical potential μ and dμ/dn, which have recently been performed on

monolayer graphene devices197, could provide a complementary approach to studying SYK dynam-

ics in this system. Another route to SYK physics in graphene may be magic angle twisted bilayer

graphene10 (or one of its multi-layered relatives), which host flat bands even with no applied mag-

netic field and has already been shown to host a phase with near-Planckian dissipation152. For the

experiments we presented in this thesis, we hope continued dialogue with the theory community

will shed additional light on the unusual behavior we observed.

This is an exciting time to study the physics of low-dimensional (including mixed-dimensional)

devices, particularly incorporating van der Waals materials. The field is nowmature enough that

many of the earlier hurdles of material quality and fabrication techniques have been cleared. While

improvements in these areas continue to be made, graphene and its immediate relatives have come

to rival or surpass more conventional 2DEGs as a platform for quantumHall experiments. At the

same time, an increasing array of new materials and measurement techniques are creating new possi-

bilities for mesoscopic transport experiments. We hope some of the work presented here might be a

springboard for innovative studies of low-dimensional phenomena.
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A
Supporting data

This appendix provides additional data that enhances the discussion in Chapter 2.

A.1 Additional Onsager data

We present here additional data comparing the drag response using the two different circuit config-

urations: driving current in the SWNT and measuring voltage across two probes on graphene, and

driving current in the graphene and measuring voltage across the SWNT.
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Figure A.1: Drag voltage at T = 300 K as a function of drive current and gate voltage, with graphene as the drive layer
and SWNT as the drag layer. Current is applied at the closest pair of voltage probes (x = 800 nm from the SWNT).
Data has been slightly smoothed in the x‐direction to reduce noise.

Figure A.1 shows a color plot of drag voltage versus drive current and gate voltage at T = 300 K,

using the graphene as the drive layer and SWNT as the drag layer. We have applied a narrow (±3 V

range) moving average filter in the x-direction (gate voltage axis), essentially binning the data from

adjacent gate voltages together, to reduce noise and make overall trends in the data more apparent.

The same general behavior is apparent in this reciprocal configuration as shown in the Chapter 2 for

SWNT-drive, graphene-drag measurements (Figure 2.4(e)), although the higher degree of noise in

measurements using the SWNT as the drag layer complicates a straightforward comparison based

on the color plots alone.

Additional examples of drag voltage versus drive current data for reciprocal drag circuit configu-

rations at individual gate voltages are shown in Figure A.2. Our moving average filter is restricted to

an even smaller range (±1 V) for better quantitative comparison. The range of Idrive is restricted to

avoid nonlinearites due to high bias, although some nonlinearity in the SWNT-drive data (orange,

filled circles) at gate voltages nearer the graphene CNP (e.g. Fig. A.2(c-e)). Although there is more

noise in the measurements for which the SWNTwas the drag layer (blue, open circles), the general

degree to which the two data sets coincide and the overall linearity of both measurements provide
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strong evidence that Onsager reciprocity is respected in this regime.

The higher level of noise in the measured drag voltage when the SWNT is the drag layer, which

is consistently observed across all gate voltages and temperature, merits some discussion. There are

a few potential reasons for increased voltage fluctuations when the SWNT is the drag layer. First

of all, the drag resistance is on the order of a few Ohms, while the channel resistance of graphene

is less than∼ 1 kΩ, and the resistance of the SWNT is larger than 1 MΩ. Such a large disparity

between the SWNT resistance and the drag resistance makes it challenging to detect small resistance

variations when we use the SWNT as drag layer. The higher resistance of the SWNTmeans that

small current fluctuations result in larger voltage noise than would be observed if another graphene

sheet were used as the drive layer.

An additional contributing factor may be random reconfiguration of mobile charges on the SiO2

substrate. In our device geometry, the graphene channel is encapsulated, but the SWNT is in di-

rect contact with the SiO2. Thus, stochastic charge fluctuations in the charge traps on the substrate

can induce voltage fluctuations in the SWNTwhen it is being used as drag layer to probe potential.

For SWNT drive, we apply a relatively large bias voltage to obtain the same amount of drive cur-

rent, thus usually fluctuations in the charge environment would not affect the driving current. The

graphene drag layer is much less disordered and thus less susceptible to charge fluctuations on the

SiO2.

Finally, the increased noise level in the graphene drive-nanotube drag configuration may be a re-

sult of the high SWNT resistance relative to the amplifier impedance. The input impedance of the

voltage amplifier we use is 100MΩ (SR560) while the load resistance of nanotube is∼2MΩ. In

order to avoid spurious capacitive coupling, we measure the DC drag at slow speed, correspond-

ing to 300 ms of averaging time and∼ 1 second per data point acquisition. In this regime of low

frequency measurement with large source resistance, the noise figure (NF) of our preamp is∼ 0.5

dB (https://www.thinksrs.com/products/sr560.htm), suggesting that the noise is completely domi-
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Figure A.2: Drag voltage versus drive current at various gate voltages for reciprocal layer configurations: driving cur‐
rent in the SWNT while measuring graphene voltage (orange, filled symbols) and driving current in the graphene while
measuring voltage across the SWNT (blue, open symbols) at T = 300 K.Vg value stated is the center of the moving
average filter. (a)Vg = 23 V. (b)Vg = 20 V. (c)Vg = 16 V. (d)Vg = −5 V. (e)Vg = −11 V. (f)Vg = −18 V.
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nated by Johnson noise across the source resistance. The effective rms noise is∼ 0.5 μV, comparable

to the fluctuation of the data we observed in the graphene drive-nanotube drag measurement. Note

that for the nanotube drive-graphene drag measurement, the source resistance drops to∼ 1 kΩ,

where the fluctuation in the measured signal is dominated by amplifier noise (NF∼ 20). We es-

timate that the rms noise for this measurement is∼ 20 nV due to the reduced source resistance

despite the increased amplifier noise.

A.2 Individual layer transport and drag resistance in different measure-

ments

The data presented in the main body of this thesis were primarily gathered from two separate ther-

mal cycles of the same device (D1), with the first set of measurements (D1-A) occurring shortly

after the completion of nanofabrication, and the second set of measurements (D1-B) starting ap-

proximately 9 months later. In Chapter 2, the data in Fig. 2.4, Fig. 2.8(a-c), and Fig. 2.15 are from

D1-A, and the data in Fig. 2.8(d-e), Fig. 2.9 and Fig. 2.10 are fromD1-B. Comparing similar mea-

surements for the two different data sets (for example the drag resistance versus back gate voltage in

Fig. 2.4(f) for D1-A and Fig. 2.9(d) for D1-B), it is apparent that they qualitatively follow the same

behavior, but with some quantitative discrepancies. In particular, the back gate voltage range with

an appreciable drag signal is much larger for D1-A (Vg ∼ 20 V) than for D1-B (Vg ∼ 3 V). This

can be attributed to a comparable change in the disorder in the graphene, observed as a change in

the CNP position and peak width. Figure A.3 shows a direct comparison of the SWNT conduc-

tance, graphene resistance, and drag resistance as a function of gate voltage for D1-A (Fig. A.3(a-

c)) and D1-B (Fig. A.3(d-f)). In both data sets, the drag signal width directly corresponds to the

width of the graphene CNP peak. Since all the preceding discussion about possible physical mecha-

nisms has relied on the interplay of various regimes (including a disorder-dominated regime) rather
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Figure A.3: Individual layer transport and drag resistance as a function of back gate voltage for measurement D1‐A. (a)
SWNT conductance at T = 200 K. (b) Graphene resistance at T = 100 K. (c) Drag resistance at T = 200 K.
(d‐e) Individual layer transport and drag resistance as a function of adjusted back gate voltage for the same device after
thermal cycling and 9 months of storage (measurement D1‐B). The voltage value at the graphene charge neutrality point
has been subtracted. (d) SWNT conductance at T = 200 K. (e) Graphene resistance at T = 200 K. (f) Drag resistance
at T = 200 K.

than specific numerical predictions (e.g. that the peaks occur at a specific Fermi wavevector in either

graphene or SWNT), our arguments should apply equally well in both data sets.

As an additional comparison, Figures A.4 and A.5 show drag resistance data from several other

devices. There are a few key differences in the geometry of the various devices. For device pair D2,

the graphene was etched into 2 bar segments of differing widths (Fig. A.4(a)). D2-1 is 1.9 μmwide,

while D2-2 is 600 nm wide. D1 and D3 have a single bar each (Fig. A.5(a)); D1 is 1 μmwide by 7 μm

long, while D3 is 1.2 μmwide by 9.7 μm long. The hBN separating the SWNT from the graphene

is significantly thicker for D2 (5 nm versus 2 nm for D1 and 3 nm for D3). Finally, the metal elec-

trodes in D2 contact narrow, protruding sections of graphene (“noninvasive” contacts), while in

D1 and D3 they directly contact the bar (“invasive” contacts). We also note that the SWNTs are all

metallic, but the chiralities and corresponding diameters are different for each device. The SWNT
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182 K

152 K

253 K

182 K

Figure A.4: a) Optical microscope image of device D2. D2‐1 refers to the lower, wider section and D2‐2 is the upper,
narrower section. Scale bar is 4 μm. (b‐c) D2‐1 drag resistance versus back gate voltage using graphene (blue) or CNT
(orange) as the drive layer, at T = 182 K (b) and 152 K (c). (d) D2‐2 drag voltage in graphene versus drive current in
SWNT at T = 200 K. (e‐f) D2‐2 drag resistance versus back gate voltage using graphene (blue) or SWNT (orange) as
the drive layer, at T = 253 K (e) and 182 K (f). The CNT charge neutrality point in all measurements is at∼ 40 V.

incorporated into D1 has chiral indices (16, 13) and diameter 1.97 nm, the SWNT in D2 has chiral

indices (21, 5) and diameter 2.26 nm, and the SWNT in D3 has chiral indices (21, 15) and diameter

2.45 nm.

Measurements of the drag resistance as a function of the gate voltage for D2-1 and D2-2 show

consistently smaller signal than D1, which is reasonable given the larger interlayer separation. The

exception is when graphene is used as the drive layer, in which case D2-1 shows a comparatively

large signal (Fig. A.4(b-c)). Drive/drag layer reciprocity is not observed in the wider bar D2-1, and
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while it is respected to a degree in the narrower bar D2-2 (Fig. A.4(e-f)), it breaks down at a higher

temperature than in device D1 (T ∼ 200 K in D2-2, compared to T ∼ 140 K in D1). These

measurements were carried out using a small drive current (200 nA) in an attempt to remain in the

linear response regime, and the reportedRdrag in Figure A.4(b-c),(e-f) is from a linear fit of the drag

voltage versus drive current in this small range. Subsequent measurements with larger drive current

(Fig. A.4(d)) show a mostly quadratic drag current-voltage relationship. It is therefore likely that the

breakdown of layer reciprocity is due to an earlier and stronger onset of nonlinear transport effects

(discussed in Section 2.5), and even measurements with a small drive current may have a substantial

nonlinear transport contribution. Furthermore, we note that narrow, noninvasive contacts have

been predicted not to thermalize efficiently with the electron system in graphene-graphene drag

devices near charge neutrality, leading to a breakdown of layer reciprocity even in the linear response

regime76. This detail of the device geometry may also contribute to the behavior seen in the D2

devices. Since the width of the narrower device D2-2 is comparable to the width of the noninvasive

graphene contacts, the bar and contact can thermalize more effectively, which allows some degree of

layer reciprocity to be preserved.

The geometry of device D3 is similar to D1, and it displays layer reciprocity at comparable tem-

peratures (Fig. A.5(b)). The drag resistance qualitatively resembles D1, although with a smaller

magnitude. This may be attributed to the increased layer separation in device D3. The graphene

quality is similar to D1 (Fig. A.5(c) versus Fig. 2.4(d)), but the SWNT has substantially higher re-

sistance and appears quite disordered (Fig. A.5(d)). The drag signal on the positive side of graphene

CNP lacks the distinctive peak of the D1 data, likely because SWNT carrier density and current

were lower than the corresponding part of the signal in D1. The high-resistance SWNT, as well as

additional inhomogeneity appearing during and after thermal cycles, prevented an extensive charac-

terization of device D3. Nonetheless, the initial data we were able to gather support the explanation

of the drag behavior in Chapter 2.
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Figure A.5: a) Optical microscope image of device D3. Scale bar is 5 μm. (b) D3 drag resistance versus gate voltage using
graphene (blue) or SWNT (orange) as the drive layer, at T = 200 K. (c) SWNT conductance versus gate voltage at
T = 200 K. (d) Graphene conductance versus gate voltage at T = 200 K.
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B
Thermopower measurement technique

In this appendix, we describe the measurement technique for the thermopower experiments de-

scribed in Chapter 4. Unlike a measurement of resistanceR = V/I, in which either voltage or

current is directly applied by the experimenter and the other quantity is measured, determining the

thermopower S = −ΔVth/ΔT of a mesoscopic device requires careful measurement to extract both

quantities. In our devices, running a current through a thin wire nearby causes Joule heating in the

wire, which generates a temperature gradient across the sample. We must then measure both the
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Figure B.1: Circuit schematic for dot thermopower measurements.

thermally-induced voltage ΔVth and the temperature gradient ΔT. In this case, we used the AC (2ω)

technique to detect ΔVth and measurements of changes in the quantumHall signal as a function of

Tbath and heater excitation to estimate the temperature gradient.

B.1 AC thermopower measurements

The underlying principle of the ACmethod for thermopower measurements is that applying an

AC excitation to the heater generates a temperature gradient modulated at twice the excitation fre-

quency, and this frequency dependence translates to ΔVth as well. This technique was used in Refs.

43 and 185, although they used a different method to estimate the temperature gradient.

Figure B.1 shows the circuit used for AC thermopower measurements across the dot. To avoid

inadvertently creating a voltage offset between the heater and graphene channel, we symmetrically

biased the heater using lock-in amplifier connected to a 1 : 1 transformer, with a tunable 10 kΩ resis-

tor between the output arms to tune the commonmode potential. The output arms are connected

to the ends of the heater through matched 470 Ω resistors, to convert the voltage bias from the exci-

tation lock-in to a current bias on the heater. The total two-terminal resistance of the heater side of

the assembly, including the external resistors, line resistances, and heater resistance, wasRh = 1.453
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kΩ, used to calculate Ih when needed. Rh was not found to change with temperature within the

experimental range. The true amplitudeV′ of the voltage excitation from the lock-in sine output is

related to the root-mean-squared (rms) value on the lock-in displayVh by

V′ =
√
2Vhcos(ωht), (B.1)

where ωh is the frequency of the AC excitation on the heater.

The temperature gradient ΔT resulting from the heater excitation is proportional to the Joule

power,

ΔT = ζ
V′2

Rh
= 2

ζ
Rh

V2
hcos

2(ωht) =
ζ
Rh

V2
hcos(2ωht) +

ζ
Rh

V2
h, (B.2)

where ζ is a proportionality constant determined by the thermometry calibration measurements

described in the next section. From the equation above, we see that applying an AC voltage to the

heater at frequency ωh generates a temperature gradient with an AC component at 2ωh with ampli-

tude ΔTAC = ζ
Rh
V2
h.

Once we have determined the corresponding ΔT, we can find the thermopower from voltage

measurements at the second harmonic of the heater frequency:

SAC =

√
2ΔVth(2ωh)

ΔT
, (B.3)

where the factor of
√
2 again comes from the fact that the lock-in amplifier detects the rms value

of the voltage. The second harmonic signal is π/2 out of phase with the original excitation, and so

should be measured on the Y channel of the lock-in amplifier. For our experiments, we typically also

used a low-noise voltage preamplifier set to a gain of 10 in order to improve the signal-to-noise ratio

for measuring small thermal voltages, but we repeatedly confirmed that repeating the measurement

without this preamplifier did not substantially affect the thermopower reading.
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B.2 Temperature gradient estimationwith quantumHall thermometry

We now describe the method for determining the temperature gradient, using the calibration cir-

cuit shown in Fig. B.2(a). The essential idea is to measure the longitudinal Hall resistance across

two voltage probes that are at the same distance from the heater, and should therefore be at the

same temperature. As the temperature increases, either globally due to a change in Tbath or more

locally due to an excitation in the heater generating a temperature gradient, the resistance values will

change. In particular, theRxx minima at integer quantumHall fillings should increase as

Rmin
xx ∝ e−Δa/kBT, (B.4)

where Δa is the activation gap198. For small changes in temperature δT, this can be approximated

by ΔRxx ∝ δT. We can therefore monitor changes inRxx as a function of eitherVh (at constant

Tbath) or Tbath (with no appliedVh). Since we have established that the temperature gradient due

to the heater excitation is proportional toV2
h, we will measure either ΔRxx(δTbath) = AδTbath

or ΔRxx(Vh) = BV2
h. Note that the coefficient A contains the factor ζ/Rh defined in the previ-

ous section. By measuring simultaneously at several pairs of voltage probes, we can map the spatial

temperature variations due to the heater; in this case, we use the pairs of contacts in the upper and

middle reservoirs closest to the dot (RU
xx andRM

xx , respectively, in Fig. B.2(a)). It is important to note

that this is a resistance measurement, not a thermopower measurement; the lock-in excitation fre-

quency for theRxx measurement (ωe) must be chosen not to overlap with the heater frequency ωh

or its second harmonic. We used ωh = 23.333 Hz and ωe = 17.777 Hz.

Some results ofRxx measurements across the upper reservoir contacts at B = 4 T as a function

ofVbg are shown in Fig. B.2(b-c) for varyingVh (b) and Tbath (c), with an initial temperature of

Tbath = 3 K. We chose to perform the calibration at B = 4 T due to the easy visibility of multiple
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Figure B.2: (a) Simplified circuit schematic for temperature gradient estimation: heater is symmetrically biased through
a 1 : 1 transformer, generating a temperature gradient across the sample proportional toV2

h . Temperature increase
across dot is estimated by measurement of changes inRxx on either side of the dot, using voltage probes at a constant
distance from the heater, as a function of eitherVh or Tbath (with no appliedVh). Rxx is measured at frequency ωe (b)
Upper reservoirRxx (RU

xx) as a function ofVbg at variousVh, with B = 4 T, Tbath = 3 K andVtg = 0 V. νres = 7, 8, 9
minima indicated by red, purple and teal stars, respectively. (c) Same measurement as (b), butVh = 0 V and Tbath is
varied from 3 K to 4.47 K. νres = 7, 8, 9 minima indicated by circles. (d)V2

h versus change inRU
xx at νres = 7, 8, 9,

with lines of best fit used for calibration. (e) Tbath versus change inRU
xx at νres = 7, 8, 9, with lines of best fit. (f)

Temperature increase from Tbath in upper (solid lines) and middle (dashed lines) reservoirs as a function ofVh. Red,
purple, and teal lines indicate individual estimates for νres = 7, 8, 9 minima, while bold black lines indicate the average
of the estimates.

142



Rxx minima within a relatively small range ofVbg. We tracked the change inRxx at νres = 7, 8, and

9 in each reservoir as a function ofV2
h and Tbath, shown in Fig. B.2(d) and (e), respectively for the

upper reservoir. Similar results were obtained for the middle reservoir, although the change inRM
xx as

a function ofV2
h was smaller due to the larger distance from the heater. By fitting the data, we could

extract the calibration coefficients A and B for each Tbath, and thus find the conversion from applied

Vh to resulting temperature: T = ABV2
h. The results for Tbath = 3 K are shown in Fig. B.2(f). We

note that eachRxx minimum gives a slightly different value for the calibration coefficients (indicated

by corresponding colors in the figure), so the average value is used for final estimate of ΔT, with any

obvious outliers excluded.

At higher temperatures (Tbath > 6 K), theRxx minima corresponding to symmetry-broken in-

teger states had become nearly indistinguishable, so we looked for other features in theRxx data that

varied linearly with respect to small changes in Tbath and used them for the calibration. While the

use of other features rests on a slightly less robust theoretical foundation thanRxx minima, we note

this method has yielded reliable temperature estimates in other graphene quantumHall systems199.
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C
Rayleigh scattering spectroscopy, imaging

and transfer of carbon nanotubes

One of the most extraordinary features of the carbon nanotube (CNT) is its extreme aspect ratio; a

single-walled CNT can be centimeters long but only a nanometer in diameter15. With typical diam-

eters far less than the diffraction limit of visible light, CNTs cannot be observed with conventional

optical microscopy, and thus alternative sensing methods are necessary to incorporate individual
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CNTs into mesoscopic devices. Furthermore, typical CVD growth methods produce CNTs with

a range of diameters and therefore electronic properties. A random distribution of diameters will

yield a batch of grown CNTs that is 1/3 metallic and 2/3 semiconducting, depending on whether

equivalent or inequivalent atoms in the graphene lattice are on top of each other when it is “rolled

up” to form the CNT. It is therefore useful to have a technique for characterizing the chiral indices

of carbon nanotubes. Finally, once a CNT has been located and characterized, it may be useful to

transfer it to a new substrate so it can be combined with other device elements (such as a van der

Waals heterostructure) or undergo additional nanofabrication steps.

To combine these three capabilities, we developed a specialized transfer stage that incorporated

Rayleigh scattering spectroscopy and imaging. The elastically scattered light from broadband illu-

mination of a suspended CNT enables both direct visualization of the CNT and identification of

its chiral indices. Once characterized and located, a desired CNT can be stamped down and trans-

ferred to a prepared substrate. This unique tool was critical in the realization of several experiments,

including the work described in Chapters 2 and 3 of this thesis and also in Refs. 14, 95. As many of

the fabrication details were described in Sections 2.3 and 3.3, this appendix will lay out some of the

underlying principles of Rayleigh spectroscopy for carbon nanotubes and give a detailed account of

the experimental apparatus as a guide for future researchers.

C.1 Theory of Rayleigh scattering spectroscopy for carbon nanotubes

This topic has been covered extensively in previous publications96,200. As such, this section will

provide a brief overview of the theory and operating principle of the Rayleigh setup.

As discussed in Section 1.1.2, the 1D confinement of the electrons in a nanotube causes van Hove

singularities in the electronic density of states (DOS). Electron-electron interactions lead to the for-

mation of strongly bound exciton states, which dominate the optical response201. The resulting
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optical transition energies can be probed by a variety of spectroscopic techniques, such as photolu-

minescence25 and Raman spectroscopy26,202. Rayleigh scattering spectroscopy, so called because

it measures the spectrum of an object smaller (in diameter, at least) than the light that it elastically

scatters, relies on the same essential physics as the optical absorption process. Since individual nan-

otubes are so small, their optical absorption is weak200, and therefore it is more practical to measure

their scattering response in a direction that avoids the incident light (darkfield geometry or “off-

axis,” meaning collected at an angle away from the incident or transmitted beam). The interaction

of a nanotube with an incident laser beam induces a dipole moment oscillating at the optical fre-

quency. The collected off-axis scattering signal scales as the radiated electric field squared, which is

quadratic in the magnitude of the induced dipole moment (|ε− 1|2, where ε is the effective dielectric

function). As the incident laser wavelength varies, peaks in the resulting scattering spectrum reflect

peaks of ε as a function of photon energy, which are a direct reflection of the electronic transitions.

The transition energies are typically labeled by both nanotube type (metallic or S1/S2 semiconduct-

ing) and the gap index, so EM11 ,EM22,EM33... are the three lowest-energy transitions for metallic nan-

otubes and E1(2)11 ,E1(2)22 ,E1(2)33 ... are the three lowest-energy transitions for type 1(2) semiconducting

nanotubes.

In 1999, H. Kataura et al.26 reported that the gap energies of nanotubes vary a function of their

diameter, producing the “Kataura plot” reproduced in Fig. C.1. A nanotube of any given diameter

has multiple bandgaps determined by its chirality; there can be multiple chiral indices that result in a

nanotube of the same diameter, but they will not have the same electronic structure or gap energies.

Each transition energy (E111,E211,E222,E122,EM11 ...) will be represented by a different branch on the

Kataura plot. Observing several optical transitions is sufficient to uniquely assign chiral indices to a

single-walled carbon nanotube.

While Rayleigh scattering spectroscopy is clearly not the only viable method for determining

the chirality of a carbon nanotube, it has several key benefits for the purposes of integration into
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Figure C.1: Kataura plot, showing the relationship between nanotube diameters and their transition energies. The first
five optical transitions for semiconducting nanotubes and the first two for metallic tubes are labeled. Data were gener‐
ated from a tight‐binding calculation described in Ref. 14.
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the fabrication process. Elastic scattering provides a relative strong signal compared, for example, to

inelastic (Raman) scattering. This makes the technique useful for imaging suspended nanotubes,

which are otherwise difficult to see or completely invisible to conventional microscopy due to their

high aspect ratio and low scattering cross-section200. Initial versions of nanotube-graphene drag de-

vice fabrication used only Raman spectroscopy for nanotube characterization, with the nanotubes

first locally coated with a Cr/Au film deposited via thermal evaporation through a stencil mask. Col-

lecting the Raman spectra also required up to several minutes of acquisition time per nanotube, and

the spectrometer was not integrated with a transfer stage. Identifying an individual single-walled,

metallic carbon nanotube and keeping track of its position along the slit of the growth chip in order

to later transfer to a heterostructure or other substrate was a time-consuming and meticulous pro-

cess. Additionally, while the metal film rendered portions of the nanotubes visible, it was also found

to diffuse along the length of many nanotubes, changing their transport characteristics. In contrast,

Rayleigh scattering spectroscopy can be combined with imaging without introducing contamina-

tion, can be made high-throughput, and, in our case, was integrated directly with a tranfer stage.

The spectroscopic results are also simple to interpret (corresponding directly to optical resonances),

and the method works reliably with metallic and semiconducting nanotubes.

C.2 Technical considerations and description of the tool

As mentioned in the previous section, it is most convenient to measure Rayleigh scattering of NTs

in a darkfield geometry, either by imaging the CNTs on a transparent substrate and carefully match-

ing the refractive indices of the surrounding media203, or by imaging CNTs suspended in air96,200.

While both present technical challenges, the latter geometry is a simpler way to prevent backscat-

tering and is more favorable for transfer to new substrates and preservation of CNT cleanliness, all

important factors for incorporation into high-quality mesoscopic devices.
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Figure C.2: Polarization dependence of carbon nanotube Rayleigh scattering. (a) Black and red lines show Rayleigh spec‐
tra collected from different spots on the same nanotube with incident light polarized parallel to the nanotube axis. Blue
line (magnification x 5) shows Rayleigh spectrum from the same nanotube with incident light polarized perpendicular to
the nanotube axis. (b) Polar plot of Rayleigh scattering intensity as a function of polarization angle θ of the incident light
relative to the nanotube axis. Black line is a cos2θ fit. Reproduced from Ref. 24.

Another key feature of the spectroscopy setup is the use of a supercontinuum white light laser

as the excitation source. In order to measure various possible transition energies, the wavelength of

the light being scattered must be varied across a reasonable subset of the range of roughly 300 nm to

2500 nm. This can be achieved with a tunable laser source, but a broadband laser enables simulta-

neous measurement at many wavelengths, dramatically decreasing the acquisition time for a single

spectrum. It is necessary to assume that inelastic scattering is much weaker than the elastic contribu-

tion, but fortunately this is generally true (though measurements of the lowest-energy transitions,

E111 and E222, may pick up significant contributions from inelastic scattering200). We used a super-

continuum laser (NKT Photonics SuperK Extreme EXW-12) with a wavelength range of 455-2350

nm, average spectral density approximately 3 mW/nm, and total power of 4W, which was more

than sufficient for excitation of detectable optical response from suspended nanotubes.
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A final technical detail that proved critical to improving the quality of the Rayleigh spectra and

images of suspended nanotubes was leveraging the strong polarization dependence of the Rayleigh

signal to enhance the signal-to-noise ratio, as shown in Figure C.224. The “antenna effect” dramat-

ically reduces the scattering response when the incident light polarization is perpendicular to the

long axis of the nanotube204. The scattered light is also predominantly polarized along the nan-

otube axis200. Our CVD-grown nanotubes have a strong tendency to grow along the direction of

gas flow, so the suspended nanotubes are well-aligned in a known direction, perpendicular the slit

over which they are suspended. We can thus introduce polarizing filters into both the incident laser

path and the detection path, so that only light along the predominant direction of the nanotubes

will be sent to the cameras and spectrometer. This dramatically reduced the level of background

signal.

The remainder of this appendix will give a detailed description of the apparatus and its opera-

tion. The majority of the parts were purchased from ThorLabs; names in parentheses refer to part

numbers (accurate at time of writing).

The transfer stage section of the Rayleigh setup (Figures C.3 and C.4) is an inversion of the more

typical transfer stage geometry: lower stage, which supports the target substrate held down by vac-

uum suction and heated by themocouples attached to the copper block, moves in x, y, and z, while

the suspended CNTs are supported by the slide holder and move only in the xy-plane. The fixed z-

distance for the CNTs aids in maintaining the focus of the supercontinuum laser at the location of

the CNTs.

The fan can be used to speed up cooling of the stage, but should be used with caution, as the

resulting vibrations potentially induce strain between the NTs (or whatever is being transferred)

and the target substrate. The “height adjust” knob manually controls the fan height. The x, y, and z

motion of the lower stage are controlled by one motorized controller (part number), while the x and

y motion of the slide holder and z motion of the objectives (i.e. their focal plane) are controlled by a
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Al block w/ vacuum tube
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Brass blockVacuum 

hole

Rotation stage (manual)

Manual XY stage

Connection to rear post Z 
motor (ZFM 2030)

Figure C.3: Front view of stage and manipulators, with photograph (left) and schematic (right). The angled white laser
couple visible in the photograph is described in more detail in Figure C.8.

separate controller.

Figures C.5 and C.6 show front and top-down representations of the imaging column, which is

the first part of the detection path for the Rayleigh signal and both illumination and detection paths

for using the setup as a typical optical microscope. The lenses are Mitutoyo NIR/visible long work-

ing distance objectives (it is important to ensure, as much as possible, that all optical components

function as intended at the full range of wavelengths of the supercontinuum laser). The lenses are

on a turret mounted on a holder connected to the rear supporting column, with a motor (connected

to the same controller as the x and y motion of the slide holder) adjusting the height. A flexible bel-

lows connects this to a hole in a upper breadboard, which supports the rest of the imaging column.

The vertically-mounted components consist of a 50/50 plate beam splitter (which allows light from

the sample to pass through, but also reflects down LED light from the side as illumination for op-

tical microscopy), an adjustable iris aperture (to adjust the amount of light coming in, if the signal

is too bright), a polarizing prism (aligned with the nanotube axis, as discussed above), and a mirror

(to send the light to the cameras and spectrometer). Behind the column is a white LED light source
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Figure C.4: Side view of stage and manipulators (without slide holder).

used for optical microscopy, which is directed to the imaging column via a mirror and the beam

splitter. There are some extraneous optical components visible in the pictures which belong to an

attempt to add Raman spectroscopy capabilities to the setup; these were deemed unnecessary, given

the reliability of our Rayleigh spectroscopy and imaging.

The last section of the detection path sends the light from the imaging column to another 50/50

beam splitter. One half of the signal is focused through a lens and sent through a camera mount to

either a visible-wavelength color camera (used when the transfer stage is being operated for typical

van der Waals heterostructure fabrication) or a NIR camera (for Rayleigh imaging; most nanotube

transition energies are in the IR range). The other half of the signal is focused through a 20x NIR

objective to an optical fiber connected to a spectrometer (Princeton Instruments SpectraPro with

PIXIS:400BR eXcelon CCD camera).

Finally, we return to the incident light path (Figure C.8). The supercontinuum laser light is sent
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Figure C.5: Imaging column (front view). Some components are presented in unrealistic colors for improved visibility.
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Figure C.6: Imaging column (top view). Unused components on breadboard are mentioned for completeness only. Photo
taken by Austin Cheng.
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Figure C.7: Camera/spectrometer coupling array (top view). Signal path is represented by orange arrows.
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XY 
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mount, lens tubes

Figure C.8: White laser coupler (lens tubes and mounting post not shown in schematic).

through a continuously variable ND filter (allowing us to reduce the power if needed, in addition to

the power adjustment capacity of the laser), a polarizing prism (aligned with the nanotube growth

direction), and a 10x NIR objective (to focus the laser on the suspended nanotubes). Manual X-Y

and Z positioning knobs allow fine adjustments of the focal point and focal plane. The entire assem-

bly is mounted on a post, so that the laser light shines up at a roughly 30◦ angle from the optical ta-

ble, passes through the slit on the nanotube growth chip (over which the nanotubes are suspended),

and is stopped by a black beamstop (not shown) to avoid dangerous reflections. Note that in the

photogragh (left side of Figure C.8), the light from the objective would be blocked by the metal

stage. This is only because the stage was in the raised “contact” position. During imaging, the stage

is lowered out of the way of the incident light path.
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D
MATLAB code for Rayleigh scattering

spectroscopy

This appendix contains the two keyMATLAB programs used for identifying nanotubes from spec-

trometer data, primarily written by Austin Cheng and included here for the reference of future

researchers. The first, “rly,” prompts the user to select data files for both spectrum and background

data (collected when the laser is not illuminating a nanotube) and outputs the spectrum with the
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background subtracted. The second, “rlypk,” takes the background-corrected spectrum from “rly,”

asks the user to identify the peak positions (typically using 2 peaks gives the best result), compares

the peak positions to the values from a Kataura plot, and outputs the results of the fit.

D.1 Background subtraction program (rly.m)

function [Wavelength,Energy,Result]=rly(CNTFullFilePath,BackgroundFullFilePath,LaserFullFilePath)

if nargin==0

% Select CNT Signal Data

[CNTFileName, CNTPathName] = uigetfile( ...

{’*.csv’,’Text Files (*.csv)’; ...

’*.txt’,’Text Files (*.txt)’; ...

’*.*’, ’All Files (*.*)’}, ...

’Pick CNT Signal Data’,’C:\Users\Kim Lab Rayleigh\Documents\LightField\2018’);

CNTFullFilePath=fullfile(CNTPathName, CNTFileName);

if isequal(CNTFileName,0)

disp(’User selected Cancel’)

else

disp([’User selected ’, CNTFullFilePath])

end

% Select Background Signal Data

[BackgroundFileName, BackgroundPathName] = uigetfile( ...

{’*.csv’,’Text Files (*.csv)’; ...

’*.txt’,’Text Files (*.txt)’; ...

’*.*’, ’All Files (*.*)’}, ...

’Pick Background Signal Data’,’C:\Users\Kim Lab Rayleigh\Documents\LightField\2018’);

BackgroundFullFilePath=fullfile(BackgroundPathName, BackgroundFileName);

if isequal(BackgroundFileName,0)

disp(’User selected Cancel’)

else

disp([’User selected ’, BackgroundFullFilePath])

end

% Select Laser Signal Data

% [LaserFileName, LaserPathName] = uigetfile( ...

% {’*.csv’,’Text Files (*.csv)’; ...

% ’*.txt’,’Text Files (*.txt)’; ...
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% ’*.*’, ’All Files (*.*)’}, ...

% ’Pick Laser Signal Data’,’C:\Users\Kim Lab Rayleigh\Documents\LightField’);

% LaserFullFilePath=fullfile(LaserPathName, LaserFileName);

% if isequal(LaserFileName,0)

% disp(’User selected Cancel’)

% else

% disp([’User selected ’, LaserFullFilePath])

% end

end

% Structure of the file is: Wavelength, Intensity.

tempCNT=importdata(CNTFullFilePath);

tempBackground=importdata(BackgroundFullFilePath);

%tempLaser=importdata(LaserFullFilePath);

CNT=tempCNT(:,2);

Background=tempBackground(:,2);

%Laser=tempLaser(:,2);

% CNT=smooth(tempCNT(:,2),10);

% Background=smooth(tempBackground(:,2),10);

% Laser=smooth(tempLaser(:,2),10);

Wavelength=tempCNT(:,1); % wavelength in nanometers

%Constants

h=6.62607*10^-34; % Planck’s Constant

c=3*10^8; % Speed of light in m/s

ec=1.60217662*10^-19; % Elementary Charge

Energy=h*c./(Wavelength*10^-9*ec);

%Result=(CNT-Background)./(Laser-Background);

%Result=(CNT-Background)./(Background);

Result=CNT-Background;

%Result=CNT;

%Result=deleteoutliers(Result,0.05,1);

%Result=smooth(Result,10);

% Plot

figure(1);

plot(Energy,Result,’b’,’LineWidth’,2);

xlabel(’Transition energy (eV)’);
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ylabel(’Intensity (a.u.)’);

xmax=h*c./(450*10^-9*ec);

xmin=h*c./(1100*10^-9*ec);

xlim([xmin xmax]);

CombinedResult=[Wavelength Energy Result];

%Output to specific directory

Out_pre=’Out_’;

Outfile=[Out_pre CNTFileName]; %name output file as ’Out_importfilename’

Outfullpath=fullfile(CNTPathName,Outfile);

save (Outfullpath,’CombinedResult’, ’-ascii’, ’-tabs’);

D.2 Peak fitting program (rlypk.m)

function [eVpk,out]=rlypk(eVpk)

% The acceptable error of peak position in eV

error=0.05;

% Constants

h=6.62607*10^-34; % Planck’s Constant

c=3*10^8; % Speed of light in m/s

ec=1.60217662*10^-19; % Elementary Charge

% Load kataura table

katauratable=load(’katauraS6.mat’);

kataura=table2array(katauratable.katauraS6);

kataurasize=size(kataura);

katauralength=kataurasize(1);

% Add additional column to kataura array for fitting parameter

kataura=[kataura zeros(katauralength,1)];

dupkataura=kataura;

dupdupkataura=kataura;

%%%%%%%%%%%%%%%%%%%%%%

if nargin==0

% Select Rayleigh spectrum with prefix Out_

[rlyFileName,rlyPathName] = uigetfile( ...

{’*.csv’,’Text Files (*.csv)’; ...

’*.txt’,’Text Files (*.txt)’; ...

’*.*’, ’All Files (*.*)’}, ...
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’Pick CNT Rayleigh Spectrum’,’D:\Rayleigh\2018’);

rlyFullFilePath=fullfile(rlyPathName, rlyFileName);

if isequal(rlyFileName,0)

disp(’User selected Cancel’)

else

disp([’User selected ’, rlyFullFilePath])

end

% Select Rayleigh peak positions

rlyspec=importdata(rlyFullFilePath);

figure(2);hold on;

h_plot=plot(rlyspec(:,2),rlyspec(:,3),’b’,’LineWidth’,2);

xlabel(’Transition energy (eV)’);

ylabel(’Intensity (counts)’);

[eVpk,pk]=ginput(6);

scatter(eVpk,pk,’r’)

end

close Figure 2

%%%%%%%%%%%%%%%%%%%%%%%%%%

eVpklength=length(eVpk);

result=[];

% Find closest match in eV peak position with Kataura values

for j = 1:7-eVpklength

for i=1:eVpklength

dupkataura(:,5+i+j)=abs(kataura(:,5+i+j)-eVpk(i));

dupkataura((dupkataura(:,5+i+j)>error),:)=NaN;

end

dupdupkataura(:,13)=sum(dupkataura(:,6+j:6+j+eVpklength-1),2);

result = vertcat(dupdupkataura(all(~isnan(dupkataura(:,1:6)),2),:),result);

dupkataura=kataura;

dupdupkataura=kataura;

end

% Sort the matches. Showing best match first.

result=sortrows(result,13);

% Remove repeated matches. Keeping the first match. The original ordering is not kept.

[C,ia,ic]=unique(result(:,1:2),’rows’,’first’);

result=result(ia,:);

% Reorder the matches by showing the best match first.

result=sortrows(result,13);

% Create table to show matches
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n=result(:,1);

m=result(:,2);

Type=num2str(result(:,4));

Type(Type==’0’)=’M’;

Diameter=result(:,5);

ChiralAngle=result(:,6);

E11eV=result(:,7);

E22eV=result(:,8);

E33eV=result(:,9);

E44eV=result(:,10);

E55eV=result(:,11);

E66eV=result(:,12);

Fit=result(:,13);

out=table(n,m,Type,Diameter,ChiralAngle,E11eV,E22eV,E33eV,E44eV,E55eV,E66eV,Fit);
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